

Lecture 4

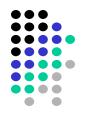
Module I: Model Checking

Topic: CTL model checking algorithms

J.Vain

1.03.2018

Kripke Structure (KS)



KS is one of the State Transition System models

4-tuple (S, S_0 , L, R) over a set of atomic propositions (AP) where

- S set of symbolic states (a symbolic state encodes a set of explicit states)
- $-S_0$ is an initial state
- L is a labeling function: $S \rightarrow 2^{AP}$
- -R is the transition relation: $R \subseteq S \times S$

Note:

L specifies what conditions the explicit states of a symbolic state have to satisfy.

Example of KS

Assume the state vector consists of 2 state variables *x* and *y*

- Initially in
$$s_0$$
 $x=1$ and $y=1$

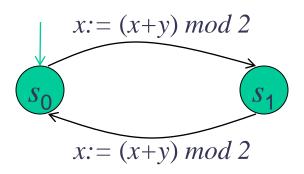
$$- S = \{s_0, s_1\}$$

$$- S_0 = \{s_0\}$$

$$- R = \{(s_0, s_1), (s_1, s_0)\}\$$

$$- L(s_0) = \{x=1, y=1\}$$

$$- L(s_1) = \{x=0, y=1\}$$

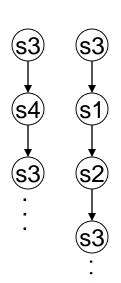


Recall: Linear Time vs. Branching Time

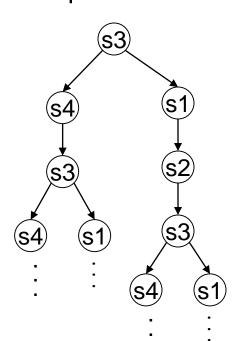
- In linear time logics we look at execution paths individually
- In branching time logics we view the computation alternatives as a tree
 - computation tree unfolds the transition relation

Transition System

Execution Paths



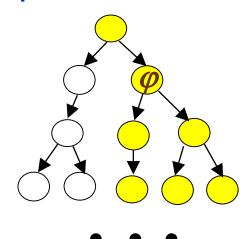
Computation Tree



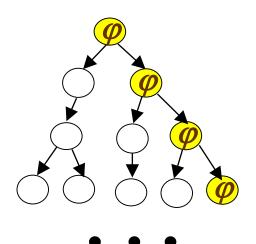
Recall: Computation Tree Logic (CTL)

- In CTL we quantify over the paths in the computation tree
- We use the same temporal operators as in LTL: X, G, F, U
- We attach path quantifiers to these temporal operators:
 - A : for all paths
 - E : there exists a path
- We end up with eight temporal operator pairs:
 - AX, EX, AG, EG, AF, EF, AU, EU

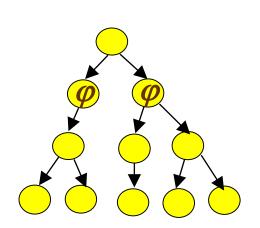
Examples



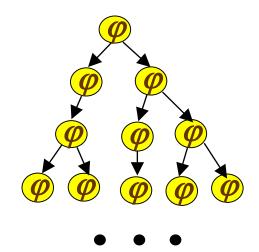
 $\mathbf{EX}\boldsymbol{\varphi}$ (exists next)



EGφ (exists global)

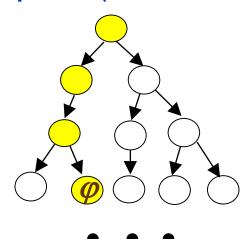


 $\mathbf{AX}\boldsymbol{\varphi}$ (all next)

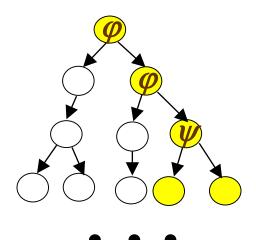


 $\mathbf{AG}\boldsymbol{\varphi}$ (all global)

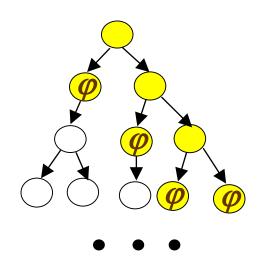
Examples (continued)



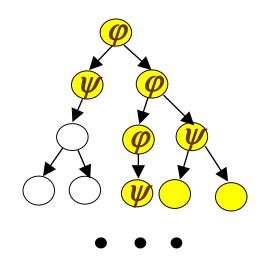
 $\mathbf{EF}\boldsymbol{\varphi}$ (exists future)



φ**EU**ψ (exists until)



 $\mathbf{AF}\boldsymbol{\varphi}$ (all futures)



 $\varphi AU\psi$ (all until)

Automated Verification of Finite State Systems

[Clarke and Emerson 81], [Queille and Sifakis 82]

CTL Model checking problem:

Given a transition system T = (S, I, R), and a CTL formula φ , does the transition system T satisfy the property φ ?

CTL model checking problem can be solved in

$$O(|\varphi| \times (|S| + |R|))$$

Note:

- the complexity is \underline{linear} in the size of the transition system T
- the complexity is <u>exponential</u> in the number of variables of φ , and |S| is exponential in the number of concurrent components of T
 - → This is called the state space explosion problem.

CTL Model Checking Algorithm (1)

Translate the formula φ to a formula φ which uses only the basis of CTL:

$$\mathbf{EX} \boldsymbol{\varphi}, \quad \mathbf{EG} \boldsymbol{\varphi}, \quad \boldsymbol{\varphi} \mathbf{EU} \boldsymbol{\psi}$$

- EF φ == E(true U φ) (because F φ == [true U(φ)]) - AX φ == ¬EX(¬ φ) - AG φ == ¬EF(¬ φ) == ¬[true EU (¬ φ)] - AF φ == A[true U φ] == ¬EG(¬ φ)
- $A[\varphi U \psi] == \neg([(\neg \psi) EU \neg(\varphi \lor \psi)] \lor EG(\neg \psi))$

CTL Model Checking Algorithm (2)

- Key idea of the algorithm
 - Label the states S of KS with atomic propositions from set AP.
 - Label the states S with subformulas of φ that hold in these states (start from the innermost non-atomic subformulas of φ).
- Properties of the algorithm:
 - Each (temporal or Boolean) operator has to be processed <u>only</u> <u>once</u>.
 - Graph traversal algorithms (DFS or BFS) are used to find the labeling of KS for each operator.
 - Computation of each sub-formula takes at most O(|S|+|R|) traversal steps.

CTL Model Checking Algorithms: intuition

- **EX** φ can be done in O(|S|+|R|)
 - All the nodes which have a next state labeled with φ should be labeled with EX φ
- $\varphi EU \psi$: find the states which are the initial states of a path where $\varphi U \psi$ holds.

Equivalently,

- find the nodes which reach ψ labeled node by a path where each node is labeled with ϕ
- Label such nodes with \(\varphi \) EU\(\varphi \)

It is a reachability problem which can be solved in O(|S|+|R|)

CTL Model Checking Algorithm: intuition

EG φ:

Find the paths where <u>each</u> node is labeled with φ and label the nodes in such paths with EG φ :

- First remove all the states which do not satisfy φ from the transition graph
- Compute the connected components of the remaining graph
- then find the nodes which can reach the connected components. (both of which can be done in O(|S|+|R|)
- Label the nodes with EG φ in the connected components and the nodes that can reach the connected components.

Verification vs. Falsification

Verification:

- Show that initial states are included in the truth set of φ

Falsification:

- Find if a state is included in the initial states \cap truth set of $\neg \varphi$
- Generate a counter-example starting from that state
- CTL model checking algorithm can also generate a counter-example path (if the property is not satisfied) <u>without increasing the complexity</u>
- The ability to find counter-examples is one of the biggest strengths of model checkers

Problems with the previous algorithm

It is named *explicit state* model checking

- All the states and labels associated to the states must be recorded when doing state space traversal
 - needs a lot of memory
 - causes exponential explosion of required memory because
 - the number of states |S| in the transition graph T is exponential in the number of variables and the concurrent processes in the system modelled with LTS.

LTS – Labeled Transition System (KS is a simple form of LTS)

Inroduction to symbolic state model checking

 How to deal with exponential explosion of the memory space of CTL model checking???

Characterization of Temporal operators as Fixpoints

[Emerson & Clarke 80]: Think about temporal op-s as recursive functions on sets

Here are some interesting CTL equivalences (for a state of computation tree)

value function
$$AG \varphi = \varphi \wedge AX AG \varphi$$

$$EG \varphi = \varphi \wedge EX EG \varphi$$

$$AF \varphi = \varphi \lor AX AF \varphi$$

$$EF \varphi = \varphi \lor EX EF \varphi$$

$$\varphi AU \psi = \psi \lor (\varphi \land AX (\varphi AU \psi))$$

$$\varphi EU \psi = \psi \lor (\varphi \land EX (\varphi EU \psi))$$

Note:

We rewrite the CTL temporal operators using the operators themselves and EX and AX operators.

Functionals (mapping a set to a set)

• Given a transition system T = (S, I, R), we will define functions from sets of states to sets of states

$$-f: 2^S \rightarrow 2^S$$
 2^S — set of subsets of S

 For example, one such function is the EX operator. It computes the "pre-image" of a set of states given a relation R.

$$- EX: 2^S \rightarrow 2^S$$

which can be defined as:

$$\mathrm{EX}(\boldsymbol{\varphi}) = \{ s \mid (s, s') \in R \text{ and } s' \in [|\boldsymbol{\varphi}|] \}$$

Abuse of notation:

Generally, $[|\varphi|]$ denotes the set of states which satisfy the property φ , i.e., the truth set of φ . Here we use just φ in the same sense.

Functionals

- Now, we can think of all temporal operators also as functionals from sets of states to sets of states
- For example,

in logic notation:

$$AX \varphi = \neg EX(\neg \varphi)$$

or if we use set notation

$$AX \varphi = (S - EX(S - \varphi))$$

Abuse of notation: we will use the set and logic notations interchangeably keeping in mind the correspondence

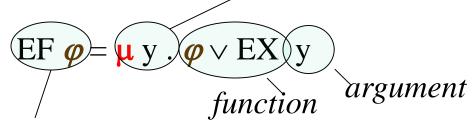
<u>Logic</u>	<u>Sets</u>
false	Ø
true	S
$\neg \boldsymbol{\varphi}$	$S-oldsymbol{arphi}$
$\varphi \wedge \psi$	$oldsymbol{arphi}\capoldsymbol{\psi}$
$\varphi \lor \psi$	$oldsymbol{arphi} \cup oldsymbol{\psi}$

Temporal Properties as Fixpoints (1)

Based on the equivalence $EF \varphi = \varphi \lor EX EF \varphi$ we observe that $EF \varphi$ is a fixpoint of the following function:

$$f y = \varphi \lor EX y$$
, where $y = EF \varphi$
i.e., $f y = y$

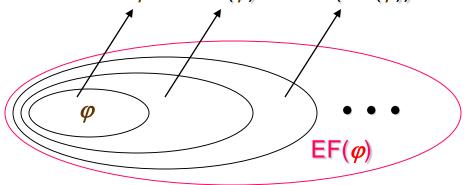
In fact, EF φ is the <u>least fixpoint</u> of f, which is written as:



The value of function is fixpoint if it equals to the argument

EF Fixpoint Computation

 $\mathsf{EF}(\varphi) \equiv \mathsf{states} \ \underline{\mathsf{from}} \ \mathsf{where} \ \underline{\varphi} \ \mathsf{is} \ \mathsf{reachable} \equiv \underline{\varphi} \ \cup \ \mathsf{EX}(\varphi) \ \cup \ \mathsf{EX}(\mathsf{EX}(\varphi)) \ \cup \ \ldots$



Temporal Properties as Fixpoints (2)

Based on the equivalence EG $\varphi = \varphi \land EX EG \varphi$ we observe that EG φ is a fixpoint of the following function:

$$fy = \varphi \wedge EXy$$
,
i.e., $f(EG \varphi) = EG \varphi$

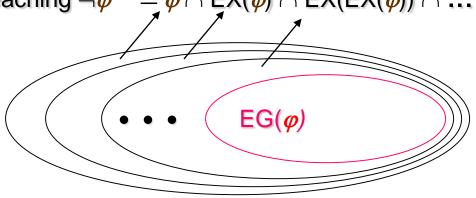
In fact, EG φ is the <u>greatest fixpoint</u> of function $\varphi \land EX$, which is written as:



Fixpoint value

EG Fixpoint Computation

 $\mathsf{EG}(\varphi) \equiv \text{``states that can avoid reaching } \neg \varphi \text{''} \equiv \varphi \cap \mathsf{EX}(\varphi) \cap \mathsf{EX}(\mathsf{EX}(\varphi)) \cap \dots$



μ-Calculus

 μ -Calculus is a temporal logic which consist of :

- Atomic propositions AP
- Boolean connectives: ¬ , ∧ , ∨
- Pre-image operator: EX
- Least and greatest fixpoint operators: μy . F y and νy . F y

Any CTL* formula can be expressed in µ-calculus

Symbolic Model Checking

[McMillan et al. LICS 90]

- Represent sets of states S and the transition relation R as Boolean logic formulas
- Fixpoint computation becomes formula manipulation, that includes:
 - pre-condition (EX) computation and existentially bound variable elimination;
 - conjunction (intersection), disjunction (union) and negation (set difference), and equivalence checks;
 - use an efficient data structure (BDD) for boolean logic formulas (BDD stands for Binary Decision Diagram).

Example: Mutual Exclusion Protocol

Two concurrently executing processes are trying to enter their critical section without violating mutual exclusion condition

```
Process 1:
while (true) {
   out: a := true; turn := true;
  wait: await (b = false or turn = false);
  cs: a := false;
Process 2:
while (true) {
   out: b := true; turn := false;
  wait: await (a = false or turn);
  cs: b := false;
```

Encoding State Space S

- Encode the state space using only boolean variables
- Two program counter variables: pc1, pc2
 with domains {out, wait, cs}
 - We need two boolean variables per program counter to encode their 3 values:

– Encoding:

$$\begin{array}{lll} \operatorname{pcl} &=& \operatorname{out} & \longrightarrow & \neg \operatorname{pcl}_0 \wedge \neg \operatorname{pcl}_1 \\ \operatorname{pcl} &=& \operatorname{wait} & \longrightarrow & \neg \operatorname{pcl}_0 \wedge \operatorname{pcl}_1 \\ \operatorname{pcl} &=& \operatorname{cs} & \longrightarrow & \operatorname{pcl}_0 \wedge \operatorname{pcl}_1 \end{array}$$

• The other three variables turn, a, b are already booleans.

Encoding State Space S

Each state can be written as a tuple:

```
(pc1₀, pc1₁, pc2₀, pc2₁, turn, a, b)
After encoding:
(o, o, F, F, F) becomes (F,F,F,F,F,F,F)
(o, c, F, T, F) becomes (F,F,T,T,F,T,F)
```

 We can use boolean logic formulas on the variables pc1₀,pc1₁,pc2₀,pc2₁,turn,a,b to represent **sets** of states:

```
 \{(F,F,F,F,F,F,F)\} \equiv \neg pc1_0 \land \neg pc1_1 \land \neg pc2_0 \land \neg pc2_1 \land \neg turn \land \neg a \land \neg b \} 
 \{(F,F,T,T,F,F,T)\} \equiv \neg pc1_0 \land \neg pc1_1 \land pc2_0 \land pc2_1 \land \neg turn \land \neg a \land b \}
```

$$\{(\mathsf{F},\mathsf{F},\mathsf{F},\mathsf{F},\mathsf{F},\mathsf{F},\mathsf{F}),\,(\mathsf{F},\mathsf{F},\mathsf{T},\mathsf{T},\mathsf{F},\mathsf{F},\mathsf{T})\} \equiv \neg \mathsf{pc1}_0 \land \neg \; \mathsf{pc1}_1 \land \neg \mathsf{pc2}_0 \land \neg \; \mathsf{pc2}_1 \land \neg \; \mathsf{turn} \land \neg \mathsf{a} \land \neg \mathsf{b} \lor \neg \mathsf{pc1}_0 \land \neg \; \mathsf{pc1}_1 \land \neg \; \mathsf{pc2}_0 \land \mathsf{pc2}_1 \land \neg \; \mathsf{turn} \land \neg \mathsf{a} \land \mathsf{b} \\ \equiv \neg \mathsf{pc1}_0 \land \neg \; \mathsf{pc1}_1 \land \neg \; \mathsf{turn} \land \neg \mathsf{b} \land (\mathsf{pc2}_0 \land \mathsf{pc2}_1 \leftrightarrow \mathsf{b})$$

Encoding Initial States

- We can write the initial states as a boolean logic formuli
 - recall that, initially: pc1=o and pc2=o but other variables may have any value in their domain

$$I = \{ (o,o,F,F,F), (o,o,F,F,T), (o,o,F,T,F), (o,o,F,T,T), (o,o,F,T,T), (o,o,F,T,T), (o,o,T,F,T), (o,o,T,T,T) \}$$

$$= \neg pc1_0 \land \neg pc1_1 \land \neg pc2_0 \land \neg pc2_1$$

meaning that

pc1 and pc2 are set to false and other variables may have arbitrary boolean values

Encoding the Transition Relation

- We can use boolean logic formulas and primed variables to encode the transition relation R.
- We will use two sets of variables:
 - Current state variables: pc1₀, pc1₁, pc2₀, pc2₁, turn, a, b
 - Next state variables: pc1₀', pc1₁', pc2₀', pc2₁', turn', a', b'
- For example, we can write a boolean logic formula for the statement of process 1:

```
cs: a := false;
```

which describes the effect of executing command symbolically:

$$\begin{array}{c}
\hline{pc1_0 \land pc1_1 \land \neg pc1_0' \land \neg pc1_1' \land \neg a' \land} \\
(pc2_0' \leftrightarrow pc2_0) \land (pc2_1' \leftrightarrow pc2_1) \land (turn' \leftrightarrow turn) \land (b' \leftrightarrow b)
\end{array}$$

- Call this formula R_{1c}

Encoding the Transition Relation

- Similarly we can write a formula R_{ij} for each statement in the program
- Then the overall transition relation is

$$R \equiv R_{1o} \lor R_{1w} \lor R_{1c} \lor R_{2o} \lor R_{2w} \lor R_{2c}$$

But how to interprete the temporal operators of φ on symbolic representation of M??

Symbolic Pre-Condition Computation

Recall the pre-image functional

EX:
$$2^S \rightarrow 2^S$$
 which is defined as:
EX(φ) = { $s \mid (s, s') \in R \text{ and } s' \in [|\varphi|]$ }

We can symbolically compute pre as follows:

$$\mathrm{EX}(\boldsymbol{\varphi}) \equiv \exists V' (R \wedge \boldsymbol{\varphi} [V' / V])$$

- V: values of Boolean variables in the current-state
- V': values of Boolean variables in the next-state
- $-\varphi[V'/V]$: rename variables in φ by replacing current-state variables with the corresponding next-state variables
- $-\exists V' f$: means existentially quantifying variables V' in f

Renaming

- Assume that we have two variables x, y.
- Then, $V = \{x, y\}$ and $V' = \{x', y'\}$
- Renaming example:

Given
$$\varphi \equiv x \wedge y$$
:
 $\varphi[V' / V] \equiv x \wedge y [V' / V] \equiv x' \wedge y'$

Existential Quantifier Elimination

Given a boolean formula f and a single variable v

$$\exists v f \equiv f [true/v] \lor f [false/v]$$

i.e., to existentially quantify out a variable, first set it to true then set it to false and then take the disjunction of the two results.

```
• Example: f \equiv \neg x \land y \land x' \land y'

\exists V' f \equiv \exists x' (\exists y' (\neg x \land y \land x' \land y'))

\equiv \exists x' ((\neg x \land y \land x' \land y')[true/y'] \lor (\neg x \land y \land x' \land y')[false/y'])

\equiv \exists x' (\neg x \land y \land x' \land true \lor \neg x \land y \land x' \land false)

\equiv \exists x' (\neg x \land y \land x')

\equiv (\neg x \land y \land x')[true/x'] \lor (\neg x \land y \land x')[false/x'])

\equiv \neg x \land y \land true \lor \neg x \land y \land false

\equiv \neg x \land y
```

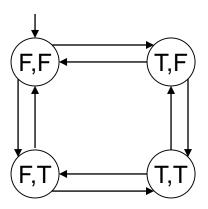
An Extremely Simple Example

Variables: x, y: boolean

Set of explicit states:

$$S = \{(F,F), (F,T), (T,F), (T,T)\}$$

 $S \equiv true$



Initial condition:

$$I \equiv \neg x \land \neg y$$

Transition relation (after simplification):

$$R \equiv x' = \neg x \wedge y' = y \vee x' = x \wedge y' = \neg y$$

 $(= means \leftrightarrow)$

An Extremely Simple Example

- Given $\varphi = x \wedge y$ and R
- Compute EX(\(\varphi\))

 $\equiv \neg X \wedge V \vee X \wedge \neg V$

$$EX(\varphi) \equiv \exists V' R \land \varphi[V' / V] / by \text{ substit}$$

$$\equiv \exists V' R \land x' \land y' = y \lor x' = x \land y' = \neg y) \land x' \land y' / by \text{ distr}$$

$$\equiv \exists V' (x' = \neg x \land y' = y) \land x' \land y' \lor (x' = x \land y' = \neg y) \land x' \land y' / by \leftrightarrow$$

$$\equiv \exists V' \neg x \land y \land x' \land y' \lor x \land \neg y \land x' \land y'$$

/ by \exists -elimination

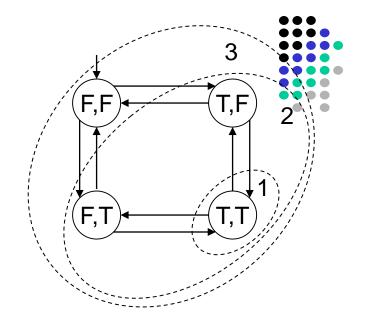
we get

$$EX(x \wedge y) \equiv \neg x \wedge y \vee x \wedge \neg y,$$

in terms of explicit states $EX(\{(T,T)\}) \equiv \{(F,T), (T,F)\}$

An Extremely Simple Example

Let's compute $EF(x \wedge y)$



The fixpoint sequence is

False, $x \wedge y$, $x \wedge y \vee EX(x \wedge y)$, $x \wedge y \vee EX(x \wedge y) \vee EX(x \wedge y)$, ... If we do the EX computations, we get:

False,
$$x \wedge y$$
, $x \wedge y \vee \neg x \wedge y \vee x \wedge \neg y$, True 3

 $EF(x \land y) \equiv True$ in terms of explicit states $EF(\{(T,T)\}) \equiv \{(F,F),(F,T),(T,F),(T,T)\}$

An Extremely Simple Example

• Based on our results, shown on example transition system T = (S, I, R) we have

```
If I \subseteq EF(x \land y) (\subseteq corresponds to implication) hence: T \models EF(x \land y)
```

(i.e., there exists a path from the initial state s.t. eventually x and y become true in the same state)

lf

$$I \not\subseteq EX(x \land y)$$
 hence:

$$T \not\models EX(x \wedge y)$$

(i.e., there does not exist a path from the initial state where in the next state x and y both become true)

An Extremely Simple Example

- Let's try one more property AF(x ∧ y)
- To check this property we first convert it to a formula which uses only temporal operators in our basis:

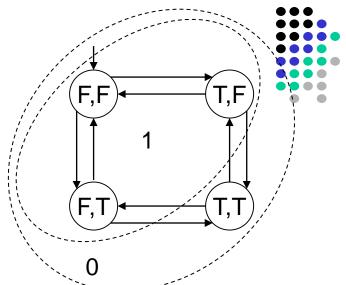
$$AF(x \wedge y) \equiv \neg EG(\neg(x \wedge y))$$

i.e.,

if we can find an initial state which satisfies $EG(\neg(x \land y))$, then we know that the transition system T does not satisfy the property $AF(x \land y)$

An Extremely Simple Example

Let's compute $EG(\neg(x \land y))$



The fixpoint sequence is:

true,
$$\neg x \lor \neg y$$
, $(\neg x \lor \neg y) \land EX(\neg x \lor \neg y)$, ...

If we do the EX computations, we get:

True,
$$\neg x \lor \neg y$$
, $\neg x \lor \neg y$, 0

$$EG(\neg(x \land y)) \equiv \neg x \lor \neg y$$

Since $I \cap EG(\neg(x \land y)) \neq \emptyset$ we conclude that $T \not\models AF(x \land y)$

Symbolic CTL Model Checking Algorithm (in general)

- Translate the formula to a formula which uses the CTL basis
 - $EX \varphi$, EG φ , φ EU ψ
- Atomic formulas can be interpreted directly on the state representation
- For EX φ compute the pre-image using existential variable elimination
- For EG and EU compute the fixpoints iteratively

Symbolic Model Checking Algorithm (1)

Check(f: CTL formula): boolean logic formula (here we use logic encoding of sets of states)

```
case: f \in AP return f;

case: f \equiv \neg \varphi return \neg Check(\varphi);

case: f \equiv \varphi \land \psi return Check(\varphi) \land Check(\psi);

case: f \equiv \varphi \lor \psi return Check(\varphi) \lor Check(\psi);

case: f \equiv EX \varphi return \exists V. R \land Check(\varphi) [V'/V].
```

Symbolic Model Checking Algorithm (2)

Check(f)

```
. . .
```

```
case: f \equiv EG \varphi
    Y := True; // initializing Y (includes all states)
    P := Check(\varphi); // P - set of states where \varphi is true
    Y' := P \wedge Check(EX(Y));
    while (Y \neq Y') // fixpoint condition
           Y := Y';
           Y' := P \wedge Check(EX(Y));
    return Y; //Y – set of states where EG \varphi is true
```

Symbolic Model Checking Algorithm

Check(f)

```
. . .
```

```
case: f \equiv \varphi EU \psi
    Y := False; //(empty set)
    P := Check(\varphi); // P-set of states where \varphi is true
    Q := Check(\psi); // Q-set of states where \psi is true
    Y' := Q \vee [P \wedge Check(EX(Y))];
    while (Y \neq Y')
           Y := Y'; states from which Y states are reachable
           Y' := Q \vee [P \wedge Check(EX(Y))];
    return Y;
```

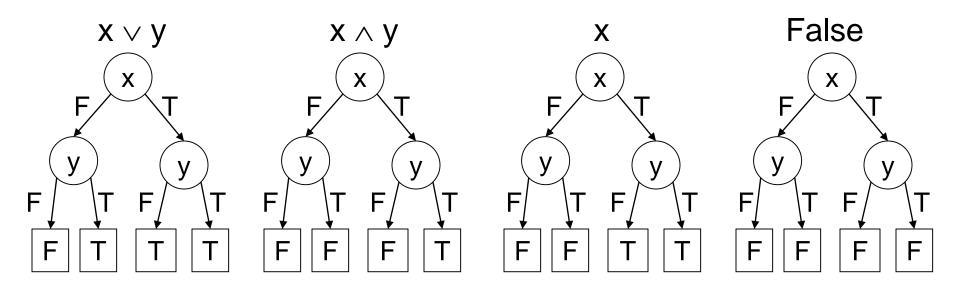
Binary Decision Diagrams (BDDs)

- Binary Decision Diagrams (BDDs)
 - An efficient data structure for boolean formula manipulation.
 - There are BDD packages available, e.g.
 https://github.com/johnyf/tool_lists/blob/master/bdd.md
- BDD data structure can be used to implement the symbolic model checking algorithms discussed above.
- BDDs are <u>canonical representation</u> for boolean logic formulas, i.e.
 - given formulas F and G, they are $F \Leftrightarrow G$ if their BDD representations are identical.

Binary Decision Trees (BDT)

Fix a variable order, in each level of the tree branch one value of the variable in that level.

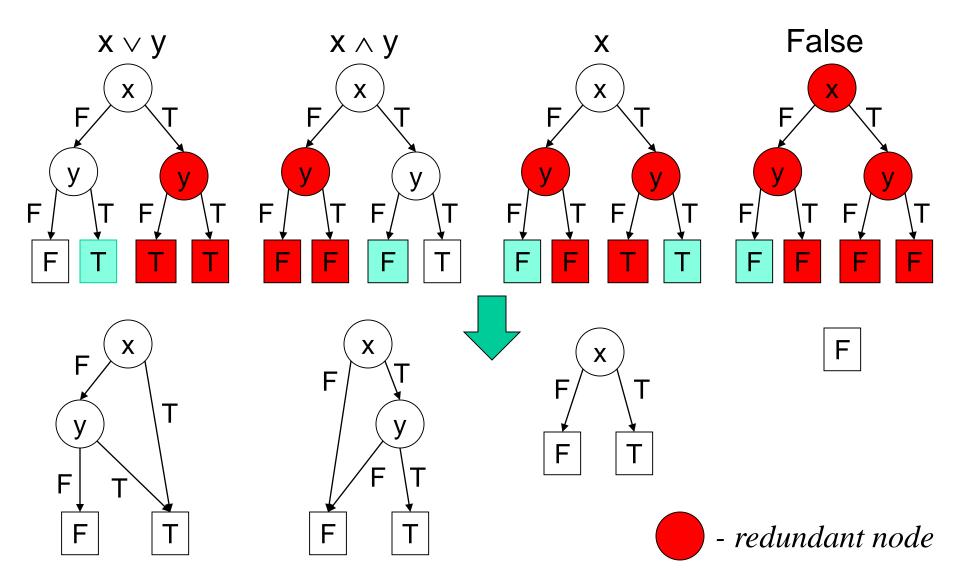
Examples of BDT-s for boolean formulas of two variables:
 Variable order: x, y



Transforming BDT to BDD

- Repeatedly apply the following transformations to a BDT:
 - Remove duplicate terminals & redraw connections to remaining terminals that have same name as deleted ones
 - Remove duplicate non-terminals & ...
 - Remove redundant tests
- These transformations transform the tree to a directed acyclic graph binary decision diagram (BDD).

Mapping Binary Decision Trees to BDDs



Good News About BDDs

- Given BDDs for two boolean logic formulas F and G,
 - the BDDs for F \(\times \) G and F \(\times \) G are of size |F| \(\times |G| \) (and can be computed in that time)
 - the BDD for ¬F is of size |F| (and can be computed in that time)
 - Equivalence F ≡? G can be checked in constant time
 - Satisfiability of F can be checked in constant time

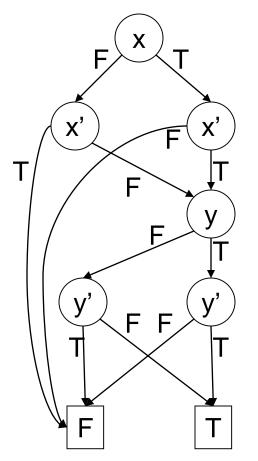
Bad News About BDDs

- The size of a BDD can be exponential in the number of boolean variables
- The sizes of the BDDs are very <u>sensitive to the ordering of variables</u>.
 Bad variable ordering can cause exponential increase in the size of the BDD
- There are functions which have BDDs that are exponential for any variable ordering (for example binary multiplication)
- Pre-image computation requires existential variable elimination
 - Existential variable elimination can cause an exponential blow-up in the size of the BDD

BDDs are Sensitive to Variable Ordering

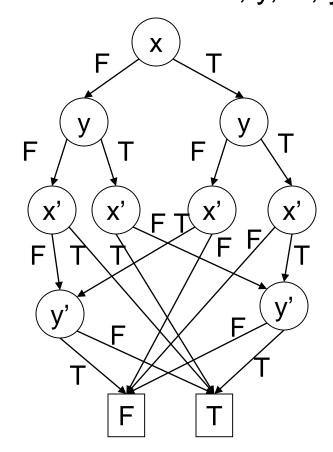
Identity relation for two variables: $(x' \leftrightarrow x) \land (y' \leftrightarrow y)$

Variable order: x, x', y, y'



For n variables, 3n+2 nodes

Variable order: x, y, x', y'



For *n* variables, $3 \times 2^n - 1$ nodes

What About LTL and CTL* Model Checking?

- The complexity of the model checking problem for LTL and CTL* is:
 - $(|S|+|R|) \times 2^{O(|f|)}$ where |f| is the number of logic connectives in f.
- Typically the size of the formula is much smaller than the size of the transition system
 - So the exponential complexity in the size of the formula is not very significant in practice