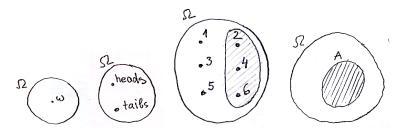
Theory of Unbreakable Ciphers

Ahto Buldas

September 30, 2019

Sample Space and Events

 Ω -sample space, that contains all possible outcomes $\omega \in \Omega$.



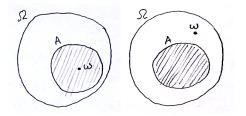
For example, $\Omega = \{ \text{heads}, \text{tails} \}$ for a coin, and $\Omega = \{1, \dots, 6\}$ for a die.

Events are subsets $A \subseteq \Omega$.

For a die, the event $\{2,4,6\}$ means that the outcome is even.

When do Events Happen?

An event A happens if $\omega \in A$ for the actual outcome ω .



Empty event \emptyset is called the *impossible event* (it *never* happens)

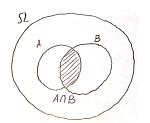
 Ω is called the *universal event* (it *always* happens)

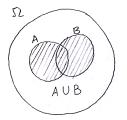
Operations with Events

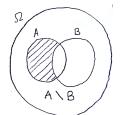
For every two events A and B we can compute:

Intersection A and B

$$\begin{array}{ll} \textit{Intersection} & \textit{A and } B \\ \textit{Union} & \textit{A or } B \\ \textit{Difference} & \textit{A but not } B \end{array} \qquad \begin{array}{ll} \textit{A} \cap \textit{B} = \{\omega \in \Omega \colon \omega \in \textit{A} \text{ and } \omega \in \textit{B}\} \\ \textit{A} \cup \textit{B} = \{\omega \in \Omega \colon \omega \in \textit{A} \text{ or } \omega \in \textit{B}\} \\ \textit{A} \backslash \textit{B} = \{\omega \in \Omega \colon \omega \in \textit{A} \text{ and } \omega \not \in \textit{B}\} \end{array}$$



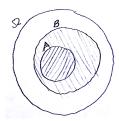


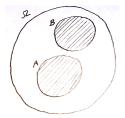


Relations Between Events

Inclusion: Event A *implies* event A, if $A \subseteq B$, i.e. if $\omega \in A$ always implies $\omega \in B$. If A happens then B happens.

Exclusion: Events A and B are *mutually exclusive* if $A \cap B = \emptyset$, i.e. A and B cannot simultaneously happen.





Some Properties

Theorem (1)

$$A = (A \backslash B) \cup (A \cap B)$$

Proof.

We prove (a) $A\subseteq (A\backslash B)\cup (A\cap B)$ and (b) $(A\backslash B)\cup (A\cap B)\subseteq A$

- (a) If $\omega \in A$ then either:
- $\circ \omega \in B$, which implies $\omega \in A \cap B$, or
- $\omega \notin B$, which implies $\omega \in A \backslash B$
- (b) If $\omega \in (A \backslash B) \cup (A \cap B)$, then either:
- $\circ \omega \in A \backslash B$, which implies $\omega \in A$, or
- $\circ \omega \in A \cap B$, which also implies $\omega \in A$

Some Properties

Theorem (2)

$$A \cup B = (A \backslash B) \cup B$$

Proof.

We prove (a) $A \cup B \subseteq (A \backslash B) \cup B$ and (b) $(A \backslash B) \cup B \subseteq A \cup B$

- (a) If $\omega \in A \cup B$, then either:
- $\circ \omega \in B$ or
- $\omega \notin B$ and $\omega \in A$, which implies $\omega \in A \backslash B$.
- (b) If $\omega \in (A \backslash B) \cup B$ then either:
- $\circ \omega \in B$ or
- $\circ \omega \in A \backslash B$ that implies $\omega \in A$.

Event Algebra

The set \mathcal{F} of all events we consider must be a *sigma-algebra*:

- $\Omega \in \mathcal{F}$
- If $A \in \mathcal{F}$, then $\Omega \backslash A \in F$
- If $A_1, A_2, A_3, \ldots \in \mathcal{F}$, then $A_1 \cup A_2 \cup A_3 \cup \ldots \in \mathcal{F}$

If $A \in \mathcal{F}$, then A is said to be a *measurable* subset.

Example: The set $P(\Omega)$ of all subsets of Ω is a sigma-algebra.

In this class, we mostly assume that $\mathcal{F} = P(\Omega)$.

Probability Measure

Probability (measure) is a function $P: \mathcal{F} \to \mathbb{R}$ such that:

- *PM1*: $0 \le P[A] \le 1$ for any event $A \in \mathcal{F}$.
- o *PM2*: $P[\Omega] = 1$
- o *PM3*: If $A_1, A_2, \ldots \in \mathcal{F}$ are mutually exclusive, then

$$P[A_1 \cup A_2 \cup \ldots] = P[A_1] + P[A_2] + \ldots$$

The triple (Ω, \mathcal{F}, P) is called a *probability space*.

If \mathcal{F} is the set of all subsets of Ω , we omit \mathcal{F} and say that a probability space is a pair (Ω, P) .

Some Implications

Theorem

$$\mathsf{P}[\Omega \backslash A] = 1 - \mathsf{P}[A]$$

Proof.

By PM2, we have $P[\Omega]=1$. As A and $\Omega \backslash A$ are mutually exclusive, and $(\Omega \backslash A) \cup A = \Omega$, by PM3, we have $P[\Omega \backslash A] + P[A] = P[\Omega] = 1$ and hence

$$\mathsf{P}[\Omega \backslash A] = \underbrace{\mathsf{P}[\Omega \backslash A] + \mathsf{P}[A]}_{\mathsf{I}} - \mathsf{P}[A] = 1 - \mathsf{P}[A] \ .$$

Some Implications

Theorem

$$\mathsf{P}[A] + \mathsf{P}[B] = \mathsf{P}[A \cap B] + \mathsf{P}[A \cup B]$$

Proof.

By Thm. 1: $A=(A\backslash B)\cup (A\cap B)$. As $A\backslash B$ and $A\cap B$ are mutually exclusive, by PM3: $P[A]=P[A\backslash B]+P[A\cap B]$. Hence,

$$\mathsf{P}[A] + \mathsf{P}[B] = \mathsf{P}[A \backslash B] + \mathsf{P}[B] + \mathsf{P}[A \cap B]$$

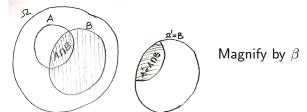
By Thm. 2: $A \cup B = (A \backslash B) \cup B$. As $A \backslash B$ and B are mutually exclusive, by PM3: $P[A \cup B] = P[A \backslash B] + P[B]$. Hence,

$$\mathsf{P}[A] + \mathsf{P}[B] = \underbrace{\mathsf{P}[A \backslash B] + \mathsf{P}[B]}_{\mathsf{P}[A \cup B]} + \mathsf{P}[A \cap B] = \mathsf{P}[A \cup B] + \mathsf{P}[A \cap B] \ .$$

Learning

Somehow we learn that an event B (with $P[B] \neq 0$) happens, i.e. $\omega \in B$.

Probability space (Ω, P) collapses to a new space (Ω', P') , where $\Omega' = B$.



We want that there is β , so that $P'[A] = \beta \cdot P[A \cap B]$ for any event A.

As in the new space, $\mathsf{P}'[B] = \mathsf{P}'[\Omega'] = 1$, we have $\beta = \frac{1}{\mathsf{P}[B \cap B]} = \frac{1}{\mathsf{P}[B]}$, i.e.

$$\mathsf{P}'[A] = \frac{\mathsf{P}[A \cap B]}{\mathsf{P}[B]} \ .$$

Conditional Probability

The probability

$$\mathsf{P}'[A] = \frac{\mathsf{P}[A \cap B]}{\mathsf{P}[B]}$$

is denoted by $P[A \mid B]$ and is called the *conditional probability* of A assuming that B happens, i.e.

$$P[A \mid B] = \frac{P[A \cap B]}{P[B]}$$

Corollary (Chain Rule):

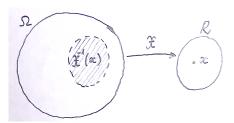
$$P[A \cap B] = P[B] \cdot P[A|B] = P[A] \cdot P[B|A]$$

Random Variables

Random variable X is any function $X \colon \Omega \to R$, where R is called the range of X. We write R_X to denote the range of X

For any $x \in R$, we define $X^{-1}(x)$ as the event $\{\omega \colon X(\omega) = x\}$ and use the notation:

$$P[x] = P[X = x] = P[X^{-1}(x)]$$
.



Finite Range Random Variables

In cryptography, we mostly assume that the range R is *finite*.

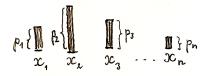
Note that if $x \neq x'$, then the events $X^{-1}(x)$ and $X^{-1}(x')$ are mutually exclusive and as $\bigcup_{x \in R} X^{-1}(x) = \Omega$, we have:

$$\sum_x \Pr_X[x] = \mathsf{P}[\cup_{x \in R} X^{-1}(x)] = \mathsf{P}[\Omega] = 1 \ .$$

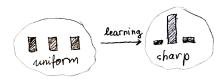
Probability Distributions and Histograms

Assume R is finite and $R = \{x_1, x_2, \dots, x_n\}$.

The sequence of values (p_1, p_2, \dots, p_n) , where $p_i = \underset{X}{\mathsf{P}}[x_i]$, is called the *probability distribution* of X.



Histograms are graphical representations of probability distributions.



Independent Events and Random Variables

Events A and B are said to be *independent* if $P[A \cap B] = P[A] \cdot P[B]$ If $P[A] \neq 0 \neq P[B]$, then independence is equivalent to:

$$\mathsf{P}[A \mid B] = \mathsf{P}[A] \qquad \text{and} \qquad \mathsf{P}[B \mid A] = \mathsf{P}[B] \enspace ,$$

i.e. the probability of ${\cal A}$ does not change, if we learn that ${\cal B}$ happened.

We say that X and Y are *independent random variables* if for every $x \in R_X$ and $y \in R_Y$:

$$\begin{split} \mathsf{P}[X = x, Y = y] &= \mathsf{P}[X^{-1}(x) \cap Y^{-1}(y)] = \mathsf{P}[X^{-1}(x)] \cdot \mathsf{P}[Y^{-1}(y)] \\ &= \mathsf{P}[X = x] \cdot \mathsf{P}[Y = y] \ . \end{split}$$

This means that the probability distribution of X does not change, if we learn the value of Y, and vice versa

Direct Product of Random Variables

By the direct product XY (or (X,Y)) of random variables X and Y on a probability space (Ω,P) is a random variable defined by

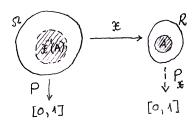
$$(XY)(\omega) = (X(\omega), Y(\omega))$$
.

Factor Space

Let X be a random variable (with range R) on a probability space (Ω, P) . If we take $\Omega' = R$ and define a probability function P on R as follows:

$$\Pr_X[A] = \Pr[X^{-1}(A)]$$

where $X^{-1}(A)=\{\omega\in\Omega\colon X(\omega)\in A\}$, we get a probability space (R,P_X) that we call a *factor space*.



Probabilistic Model of a Cipher

Plaintext X, key Z and ciphertext $Y=E_Z(X)$ are random variables on $(\Omega,\mathsf{P}).$ It is mostly assumed that X and Z are independent.

As we need only X, Y, and Z, we study the factor space (R_{XZ}, P_{XZ}) that consists of all possible plaintext-key pairs (x, z), whereas

$$\Pr_{XZ}[x,z] = \Pr[X=x] \cdot \Pr[Z=z] = p(x) \cdot p(z)$$

$$X(x,z)=x$$
, $Z(x,z)=z$, and $Y(x,z)=E_z(x)$.

Some Observations

$$\begin{split} p(y) &= & \Pr_{XZ}[Y=y] = \sum_{x,z} \Pr[x,z][E_z(x)\!=\!y] \\ &= & \sum_x p(x) \sum_z p(z) [E_z(x)=y] \\ p(x,y) &= & \Pr_{XZ}[X=x,Y=y] = \sum_z \Pr[x,z][E_z(x)=y] \\ &= & p(x) \sum_z p(z) [E_z(x)=y] \end{split}$$

Here, [A(x, yz)] is the so-called *Iverson symbol*:

$$[A(x,y,z)] = \left\{ \begin{array}{ll} 1 & \text{if } A(x,y,z) \text{ holds} \\ 0 & \text{otherwise} \end{array} \right.$$

Definition of Unbreakable Cipher

A cipher is *unbreakable* if ciphertext Y and plaintext X are independent.

Theorem

If Z is independent of X, Z is uniformly distributed and for every plaintext x and for every ciphertext y there is a unique key z such that $E_z(x)=y$, then the cipher is unbreakable.

Proof.

Due to the unique z, we have $\sum_z p(z)[E_z(x)=y]=p(z)$, and thus

$$p(x \mid y) = \frac{p(x,y)}{p(y)} = \frac{p(x) \sum_{z} p(z) [E_z(x) = y]}{\sum_{x} p(x) \sum_{z} p(z) [E_z(x) = y]} = \frac{p(x) p(z)}{p(z) \sum_{x} p(x)}$$
$$= \frac{p(x) p(z)}{p(z) \cdot 1} = p(x)$$

Shift Cipher in Unbreakable

Shift cipher: $y = E_z(x) = x + z \mod m$

For every x and y, there is one and only one z, such that $E_z(x) = y$:

$$z = y - x \mod m .$$

Therefore, by the theorem above, shift cipher is unbreakable.

Redundancy of English

In case of 26-letter alphabet, a single letter contains $\log_2 26 \approx 4.7$ bits of information.

Random n-letter sequence contains 4.7n bits of information.

Meaningful english texts contain just about $1.5\ \mathrm{bits}$ of information per letter.

There are $2^{4.7n}$ arbitrary n-letter sequences, $2^{1.5n}$ of them meaningful

The probability that a randomly chosen n-letter sequence is meaningful is:

$$\mu = \frac{2^{1.5n}}{2^{4.7n}} = 2^{-3.2n} .$$

Exchaustive Key Search

Given a ciphertext y

For all keys z, check if $D_z(y)$ is a meaningful text

Success, if there is just one z for which $D_z(y)$ is meaningful

Ideal Cipher Model

For every key z, the function $E_z \colon \mathbf{X} \to \mathbf{Y}$ is a randomly chosen one-to-one function

This implies that the decryption function $D_z \colon \mathbf{Y} \to \mathbf{X}$ is also a randomly chosen one-to-one function

If $z_1 \neq z_2$, then $X_1 = D_{z_1}(y)$ and $X_2 = D_{z_2}(y)$ are independent uniformly distributed random variables

Unicity Distance

Unicity distance: message length n_0 for which the plaintext can be derived from the ciphertext via exchaustive key search

Let y be a ciphertext

Assume there are 2^k possible keys z, one of which is the right key

The probability that $D_z(y)$ is meaningful for a fixed wrong key z is $\mu=2^{-3.2n}$

The probability that $D_z(y)$ is meaningful for any of the wrong keys is bounded by $(2^k-1)\mu$ and also by $2^k\mu=2^{k-3.2n}$

If $n>n_0=\frac{k}{3.2}$, the success probability of exchaustive search increases rapidly

Unicity Distance for Substitution Ciphers

The number of keys is 26!

Hence,
$$k = \log_2(26!) \approx 88.4$$

Therefore, the unicity distance is $n_0 = 88.4/3.2 \approx 28$

