FORMAL METHODS Module 1

Exercises

- 1) Given a transition system $M = (S, S_0, L, R)$ (in the figure),
 - a) complete the specification of M by substituting "..." with right symbols from figure;
 - b) represent the model in symbolic form, e.g. transition $\langle s_2, s_0 \rangle$ in symbolic form $R_{2,0} \equiv \neg p \wedge q \wedge \neg r \wedge \neg t \wedge \neg p' \wedge \neg q' \wedge r' \wedge t'$
 - c) draw a computation tree of M up to 4 levels starting from s₀.

$$S = \{ s_0, \dots, s_3 \}$$

$$S_0 = \{ s_0 \}$$

$$L : l(s_0) = \{ r \},$$

$$l(s_1) = \{ p, t, r \}$$

$$l(s_2) = \{ \dots \}$$

$$l(s_3) = \{ \dots \}$$

$$R = \{ \dots, < s_2, s_0 >, \dots \}$$

- 2) Check the satisfiability of following CTL formulas for the transition system M defined above
 - a) M, $s_0 = EF(q)$
 - b) $M, s_0 = EG(r)$
 - c) $M, s_2 = AG(r)$
 - d) $M, s_2 \models \neg EX(r)$
 - e) $M, s_0 = A((t \lor p) U q)$
 - $f)\quad M,\,s_0\!\models\!E(r\,\text{--->}\,(t\,\wedge\!\neg\;q))$

NB! "-->" denotes temporal "leads to" operator not implication.

3. Given a symbolic state: $\varphi = \neg x_1 \wedge x_2$ and symbolic transition relation $R \equiv \neg (x_1 \Rightarrow x_2) \wedge \neg x_1' \wedge x_2'$, find symbolic pre-image $EX(\varphi) \equiv \exists V' (R \wedge \varphi [V' / V])$ using \exists -quantifier elimination.

Solution:

- 1. We substitute variables V in φ with their primed counterparts $\varphi[V' / V] \equiv \neg x_1 \wedge x_2 [x'_1 / x_1, x'_2 / x_2] \equiv \neg x'_1 \wedge x'_2$
- 2. Rewrite symbolic definition of $\mathrm{EX}(\varphi) \equiv \exists V' \ (R \land \varphi[V' \mid V])$ by substituting $\varphi[V' \mid V]$ and R, i.e.

$$EX(\boldsymbol{\varphi}) \equiv \exists V' (R \land \boldsymbol{\varphi}[V' \mid V]) \equiv \exists x'_1, x'_2(\neg(x_1 \Rightarrow x_2) \land \neg x_1' \land x_2' \land \neg x'_1 \land x'_2)$$

- 3. Simplification:
 - a. the formula of previous step has sub-formula $\neg x'_1 \land x'_2$ twice. We remove duplication and get
 - b. substitute implication using equivalence $(a \Rightarrow b \equiv \neg a \lor b)$

$$\equiv \exists x'_1, x'_2 (\neg(\neg x_1 \lor x_2) \land \neg x'_1 \land x'_2$$
 (by De'Morgan's law)

$$\equiv \exists x'_1, x'_2 (\neg \neg x_1 \wedge \neg x_2) \wedge \neg x'_1 \wedge x'_2 \qquad (by \neg \neg law)$$

$$\equiv \exists x'_1, x'_2(x_1 \land \neg x_2) \land \neg x'_1 \land x'_2$$

- 4. \exists elimination (starting from innermost bound variable x'_2)
- $\equiv \exists x'_1(((x_1 \land \neg x_2) \land \neg x'_1 \land x'_2)[false/x'_2] \lor (x_1 \land \neg x_2) \land \neg x'_1 \land x'_2)[true/x'_2])$
- $\equiv \exists x'_1 (((x_1 \land \neg x_2) \land \neg x'_1 \land false) \lor (x_1 \land \neg x_2) \land \neg x'_1 \land true)$
- $\equiv \exists x'_1(x_1 \land \neg x_2 \land \neg x'_1)$

Then eliminate $\exists x'_1$:

- $\equiv (x_1 \wedge \neg x_2 \wedge \neg x'_1)[false/x'_1] \vee (x_1 \wedge \neg x_2 \wedge \neg x'_1)[true/x'_1]$
- $\equiv (x_1 \land \neg x_2 \land \neg false) \lor (x_1 \land \neg x_2 \land \neg true)$
- $\equiv (x_1 \land \neg x_2 \land true) \lor (x_1 \land \neg x_2 \land false)$
- $\equiv (x_1 \land \neg x_2) \lor false$
- $\equiv x_1 \wedge \neg x_2$

Answer: $EX(\boldsymbol{\varphi}) \equiv x_1 \land \neg x_2$