Exercise 1. Determine which of the following functions are injective and which are surjective.

- (a) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^x$.
- (b) $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = n^2 + 3$.
- (c) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin x$.
- (d) $f : \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = x^2$.
- (e) $f: \mathbb{Z} \to \mathbb{Q}$ defined by f(n) = n/1.
- (f) $f : \mathbb{Q} \to \mathbb{Z}$ defined by f(p/q) = p, where p/q is a rational number expressed in its lowest terms with a positive denominator.
- (g) $f : \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 2x.

Exercise 2. Is relation $f \subseteq \mathbb{Q} \times \mathbb{Z}$ given by $f\left(\frac{p}{q}\right) = p$ a mapping?

Exercise 3. Is the relation $f \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by f(x) = 2x a mapping?

Exercise 4. Is the relation $f \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $f(x) = \frac{x}{2}$ a mapping?

Exercise 5. Which of the following relations $f \subseteq \mathbb{Q} \times \mathbb{Q}$ define a mapping? If f is not a mapping, supply a reason for it.

(a)
$$f\left(\frac{p}{q}\right) = \frac{p+1}{p-2}$$
 (b) $f\left(\frac{p}{q}\right) = \frac{3p}{2q}$
(c) $f\left(\frac{p}{q}\right) = \frac{p+q}{q^2}$ (d) $f\left(\frac{p}{q}\right) = \frac{3p^2}{7q^2} - \frac{p}{q}$