Exercise 1. Determine which of the following functions are injective and which are surjective.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=e^{x}$.
(b) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(n)=n^{2}+3$.
(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\sin x$.
(d) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=x^{2}$.
(e) $f: \mathbb{Z} \rightarrow \mathbb{Q}$ defined by $f(n)=n / 1$.
(f) $f: \mathbb{Q} \rightarrow \mathbb{Z}$ defined by $f(p / q)=p$, where p / q is a rational number expressed in its lowest terms with a positive denominator.
(g) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=2 x$.

Exercise 2. Is relation $f \subseteq \mathbb{Q} \times \mathbb{Z}$ given by $f\left(\frac{p}{q}\right)=p$ a mapping?
Exercise 3. Is the relation $f \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $f(x)=2 x$ a mapping?
Exercise 4. Is the relation $f \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $f(x)=\frac{x}{2}$ a mapping?
Exercise 5. Which of the following relations $f \subseteq \mathbb{Q} \times \mathbb{Q}$ define a mapping? If f is not a mapping, supply a reason for it.
(a) $f\left(\frac{p}{q}\right)=\frac{p+1}{p-2}$
(b) $f\left(\frac{p}{q}\right)=\frac{3 p}{2 q}$
(c) $f\left(\frac{p}{q}\right)=\frac{p+q}{q^{2}}$
(d) $f\left(\frac{p}{q}\right)=\frac{3 p^{2}}{7 q^{2}}-\frac{p}{q}$

