
Threads and
Java Memory Model

Oleg Šelajev
@shelajev

oleg@zeroturnaround.com

2017, Tallinn

2

● Homework is an individual assignment
● Copying work is forbidden
● Sharing work is frown upon

3

Agenda
● Threads
● Java Memory Model

2

Concurrency
● Concurrency - several computations are

executing simultaneously, potentially interacting
with each other

3

Why do we care?

https://twitter.com/reubenbond/status/662061791497744384

https://twitter.com/reubenbond/status/662061791497744384

Process
● Process - an instance of a computer program

that is being executed
● Isolated, independently executing programs
● Communicate through sockets, signals, files,

shared memory etc.

4

Thread
● Lightweight process
● Multiple streams of control flow coexist

within a process
● Has its own program counter, stack, and

local variables
● Share memory, file handles, sockets etc.

5

Why threads
● Simplicity of modelling
● Handling asynchronous events

● via blocking calls
● Resource utilisation

6

11

Resource utilisation

Starting a thread
new Thread() {
 public void run() {
 System.out.println("foo");
 }
}.start();

Starting a thread 2
new Thread(
 new Runnable() {
 public void run() {
 System.out.println("bar");
 }
 }
).start();

Waiting for a thread to complete
Thread t = new Thread() {
 public void run() {
 for (int i = 0; i < 1000000000; i++);
 System.out.println("ready");
 }
};
System.out.println("start");
t.start();
// current thread waits for t to complete
t.join();
System.out.println("end");

Pausing execution with sleep()
long start = System.currentTimeMillis();
Thread.sleep(100);
long end = System.currentTimeMillis();
System.out.println("done " + (end - start));

Daemon threads
Thread t = new Thread() {
 public void run() {
 for (int i = 0; i < 1000000000; i++);
 System.out.println("ready"); // never
printed

 }
};
System.out.println("start");
t.setDaemon(true); // won’t prevent stopping
t.start();
System.out.println("end");

Stopping a thread
final AtomicBoolean ready = new AtomicBoolean();
Thread t = new Thread() {
 public void run() {
 while (!ready.get());
 System.out.println("ready");
 }
};
System.out.println("start");
t.start();
ready.set(true);
t.join();
System.out.println("end");

Interrupting a thread
Thread t = new Thread() {
 public void run() {
 System.out.println("thread start");
 try {
 Thread.sleep(Long.MAX_VALUE);
 } catch (InterruptedException e) {
 System.out.println("thread interrupted");
 }
 }
};
System.out.println("start");
t.start(); Thread.sleep(100);
t.interrupt(); t.join();
System.out.println("end");

Interrupting a thread 2
Thread t = new Thread() {
 public void run() {
 System.out.println("thread start");
 while (true);
 }
};
System.out.println("start");
t.start();
Thread.sleep(100);
t.interrupt();
t.join();
System.out.println("end");

Interrupting a thread 3
Thread t = new Thread() {
 public void run() {
 System.out.println("thread start");
 while (!isInterrupted());
 }
};
System.out.println("start");
t.start();
Thread.sleep(100);
t.interrupt();
t.join();
System.out.println("end");

Deprecated methods
● stop()
● stop(Throwable t)
● suspend()
● resume()
● http://docs.oracle.com/javase/1.5.0/docs/guide/

misc/threadPrimitiveDeprecation.html

1
6

Race condition
● A race condition occurs when the

correctness of a computation depends on
the relative timing or interleaving of
multiple threads by the runtime; in other
words, when getting the right answer relies
on lucky timing.

Race condition example
public class UnsafeSequence {
 private int value;

 public int getNext() {
 return value++;
 }
}

Synchronization
● synchronized keyword
● Every object has an intrinsic lock - „monitor“
● Automatically acquired and released by the

executing thread in synchronized block
● Mutually exclusive
● Reentrant

1
9

Synchronization
● Synchronized block locks on object
● Instance method locks on this object
● Static method locks on Class object

2
0

Synchronization
2
0

synchronized (foo) {

 // at most one thread is

 // executing this block

}

synchronized void foo() {}

static synchronized void bar() {}

Thread safety
● In absence of sufficient synchronization the

ordering of operations in multiple threads is
unpredictable

● A class is thread-safe when it continues to
behave correctly when accessed from
multiple threads with no additional
synchronization or other coordination on
the part of the calling code

Thread safe counter
public class Sequence {
 private int value;  

 public synchronized int getNext() {
 return value++;
 }
}

Atomicity
● Operations A and B are atomic with respect

to each other if, from the perspective of a
thread executing A, when another thread
executes B, either all of B has executed or
none of it has.

● An atomic operation is one that is atomic
with respect to all other operations,
including itself, that operate on the same
state.

Wait & notify
● java.lang.Object methods
● wait – wait for a condition
● notify – signal condition
● notifyAll - signal to all
● can only be invoked when holding object

monitor
● spurious wakeup

Wait & notify 2
final AtomicBoolean ready = new AtomicBoolean();
Thread t = new Thread() {
 public void run() {
 try {
 synchronized (ready) {
 while (!ready.get()) // check condition
 ready.wait(); // wait to be notified
 }
 System.out.println("ready");
 } catch (InterruptedException e) {
 System.out.println("interrupted");
 }}};
System.out.println("start"); t.start();
synchronized (ready) {
 ready.set(true);
 ready.notifyAll(); // wake up waiting threads
}
t.join(); System.out.println("end");

Summary
● Starting & stopping threads
● Synchronization
● Wait & notify

Java Memory Model
● What? Why?
● Clear and easy to understand
● Specifies minimal guarantees given by

JVM
● Reliable multithreaded code
● Allows for high performance JVMs

Java Memory Model

Java Memory Model

What values can given read instructions
see at a given time?

Key principles
● All threads share the main memory
● Each thread uses a local working memory
● Flushing or refreshing working memory to/

from main memory must comply to JMM
rules

3
4

3
5

Safety issues in multithreaded systems
● Many intuitive assumptions do not hold
● Can't depend on testing to check for errors
● Some anomalies will occur only on some platforms
● Anomalies occur rarely and non-repeatedly

3
6

Is this code correct?
boolean ready = false;

Thread t = new Thread() {
 public void run() {
 while (!ready);
 System.out.println("ready");
 }
};
System.out.println("start");
t.start();
ready = true;
t.join();
System.out.println("end");

Synchronization is needed  
for mutual exclusion and visibility

• Synchronization isn’t just about mutual exclusion
and blocking

• It also regulates when other threads must see
writes by other threads
– When writes become visible

• Without synchronization, compiler and processor
are allowed to reorder memory accesses in ways
that may surprise you
– And break your code

x = y = 0
Thread 1 Thread 2

x =1

i = y

y =1

j = x

Is values of i and j are
possible?

x = y = 0
Thread 1 Thread 2

x =1

i = y

y =1

j = x

Can we observe i = 0 and j =
0?

x = y = 0
Thread 1 Thread 2

x =1

i = y

y =1

j = x

Can we observe i = 0 and j =
0?

x = y = 0
Thread 1 Thread 2

x =1

i = y

y =1

j = x

Can we observe i = 0 and j =
0?

x = y = 0
Thread 1 Thread 2

x =1

i = y

j = x

y = 1

Can we observe i = 0 and j =
0?

x = y = 0
Thread 1 Thread 2

x =1

i = y

j = x

y = 1

Can we observe i = 0 and j =
0?

How can this happen?
• Compiler can reorder statements

– Or keep values in registers

• Processor can reorder statements
• On multi-processor, values not synchronized to

global memory
• Memory model is designed to allow aggressive

optimisation

ref1.x = 1

lock M

glo = ref1

unlock M

lock M

ref2 = glo

unlock M

j = ref2.x
Thread 1

Thread 2

ref1.x = 1

lock M

glo = ref1

unlock M

lock M

ref2 = glo

unlock M

j = ref2.x
Thread 1

Thread 2

Everythin
g before
an unlock

Is visible to
everything after a

later lock on the
same Object

ref1.x = 1

lock M

glo = ref1

unlock M

lock M

ref2 = glo

unlock M

j = ref2.x
Thread 1

Thread 2
Lock release &
subsequent
acquire

Release and acquire
• All memory accesses before a release

– Are ordered before and visible to any memory
accesses after matching acquire

• Unlocking a monitor/lock is a release
– That is acquired by any following lock of that monitor/

lock

Volatile fields
• If a field could be accessed by multiple threads,

and at least one of those is a write, then:
– Use locking to prevent simultaneous access, or

– Make the field volatile

volatile boolean ready;

What does volatile do?
• Reads & writes go directly to memory

– Caching disabled

• Volatile longs & doubles are atomic
• Volatiles reads/writes cannot be reordered
• Reads/writes become acquire/release pairs

http://www.infoq.com/presentations/Do-You-Really-Get-
Memory

http://www.infoq.com/presentations/Do-You-Really-Get-Memory
http://www.infoq.com/presentations/Do-You-Really-Get-Memory
http://www.infoq.com/presentations/Do-You-Really-Get-Memory

Stopping a thread 2
volatile boolean ready = false;

Thread t = new Thread() {
 public void run() {
 while (!ready);
 System.out.println("ready");
 }
};
System.out.println("start");
t.start();
ready = true;
t.join();
System.out.println("end");

Another volatile example

private volatile boolean ready;
private Object data;
public Object get() {
 if (!ready) return null;
 return data;
}
public synchronized void set(Object o) {
 if (ready) throw new IllegalStateException();
 data = o;
 ready = true;
}

Volatile arrays?
• volatile A[] array;
• volatile – not transitive:

– … = array; // volatile read

– array = … // volatile write

– array[i] =… // non-volatile write

• java.util.concurrent:
– AtomicIntegerArray, AtomicLongArray,

AtomicReferenceArray

Happens before ordering
● With a single thread all is simple
● A release and a matching later acquire establish

a happens-before relationship

● Program order rule. Each action in a thread happens-
before every action in that thread that comes later in
the program order. (JLS 17.4.3)

● Monitor lock rule. An unlock on a monitor lock
happens-before every subsequent lock on that same
monitor lock. (JLS 17.4.4)

● Volatile variable rule. A write to a volatile field
happens-before every subsequent read of that same
field. (JLS 17.4.5)

Happens before ordering 2

Happens before ordering 3
● Thread start rule. A call to Thread.start on a thread happens-before

any other thread detects that thread has terminated, either by
successfully return from Thread.join or by Thread.isAlive returning
false.

● Interruption rule. A thread calling interrupt on another thread
happens-before the interrupted thread detects the interrupt (either by
having InterruptedException thrown, or invoking isInterrupted() or
interrupted()). (JLS 17.2.3)

● Finalizer rule. The end of a constructor for an object happens-before
the start of the finalizer for that object. (JLS 17.4.5)

● Transitivity. If A happens-before B, and B happens-before C, then A
happens-before C. (JLS 17.4.5)

Visibility between threads

…

write(M1)
read(M1)

…
…

…

Visibility between threads

…

write(M1)
read(M1)

…
…

…

Same monitor!

Data race
• If there are two accesses to memory location,

– At least one of those is a write, and

– The memory location is not volatile, then

The access must be ordered by happens-before

Special semantics of final fields
class A {
 final B ref;
 public A (…) {
 this.ref = … ;
 }
}

Special semantics of final fields
class A {
 final B ref;
 public A (…) {
 this.ref = … ;
 }
} Freeze

Once constructor
completes, any thread can
read values written to the
final field
- and the whole object tree
starting from the field

One more time!

Java Memory Model
• Variables: fields
• Operations:

– R/W of instance fields (read/write)

– R/W of volatile fields (volatile read/write)

– Synchronization (lock/unlock)

Java Memory Model
• Atomicity
• Visibility
• Final fields semantics
• Reordering

Atomicity
• Read/write operations are atomic
• No out of thin-air values:

– Any variable read operation should return either a
default value, or the value that was assigned to this
variable (somewhere else)

Atomicity
• Exception:

– It is allowed that reads/writes of long/
double type is not atomic, but..

– … read/write of volatile long/double
must be atomic

Atomicity
• A common mistake:

– For volatile long/double only the reads and writes are
atomic

– foo++, foo-- are not atomic!

• Solution:
– synchronized

– java.util.concurrent.atomic

Visibility
• Again, the happens-before relation:

– If X happens-before Y, then operation X is executed
before and Y will will see the result of X

Visibility guarantees
• Changes made in one thread are guaranteed to

be visible to other threads under following
conditions:
– Explicit synchronization

– Thread start and termination

– Read/write of volatiles

– First read of finals

• Thus, visibility is an issue in case if the access is
not synchronized

Ordering
• Within a thread

– Program order, as-if-sequential execution

– Reordering is possible as long as currently executing
thread cannot tell the difference (data dependencies)

Ordering Guarantees
• Ordering of synchronized blocks is preserved

– Actions in one synchronized block happen before thread
acquires the same lock

• Ordering of read/write of volatile fields is preserved
– Effect of last write to volatile is visible to all subsequent

reads of the same volatile

• Ordering of initialization/access of final fields is
preserved
– All threads will see the correct values of final fields that

where set by the constructor

x = y = 0
Thread 1 Thread 2

r1 = x

y = 1

r2 = y

x = 1
Can we observe r1 = 1 and r2
= 1?

x = y = 0
Thread 1 Thread 2

r1 = x

y = 1

r2 = y

x = 1
Can we observe r1 = 1 and r2
= 1?Yes, if T1’s actions are reordered

References / Reading

Java Language Specification, Chapter 17:

http://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html

References / Watching

https://www.youtube.com/watch?v=TxqsKzxyySo

Java Memory Model Pragmatics

Reading again
• Java Memory Model

Pragmatics (transcript)
• https://shipilev.net/blog/2014/jmm-

pragmatics/

• Close Encounters of The
Java Memory Model Kind

• https://shipilev.net/blog/
2016/close-encounters-of-
jmm-kind/

https://shipilev.net/blog/2014/jmm-pragmatics/
https://shipilev.net/blog/2016/close-encounters-of-jmm-kind/

80

Homework

Clone
https://github.com/JavaFundamentalsZT/jf-hw-threads-jmm

Create the tests described below

Check the comments in the Java file to get more hints at
what you need to change!
Submit using the normal jf-skeleton procedure (see
README.md)

81

Homework: JFHW7E1.java
Create the concurrency test:
Shared memory: int a; int b 
 
Thread 1: b = 1; x = a; 
Thread 2: a = 1; y = b; 
 
 
Question: what values of x, y can be
observed at the end?

82

Homework: JFHW7E2.java
Create the concurrency test:
 
Shared memory: an instance of java.util.BitSet 
 
Thread 1: sets 0th bit of the BitSet to true 
Thread 2: sets 1st bit of the BitSet to true 
 
 
Question: what values of 0th and 1st bits in
the bitset can be observed at the end?

83

Homework: JFHW7E3.java

Come up with a description of the test that shows non-trivial
executions. 
If a result of the test shows interesting reorderings, the properties
of the volatiles, or something you think is worth showing.  
  
Create a test and explain it.  

84

Homework: Explain the results

Find the results in the “results” folder.
Copy the relevant section into the javadoc of the test
class.

Explain why these results happen! Be concise, but show
that you understand it.

