ITC8190
 Mathematics for Computer Science
 Binary Relations on a Set

Aleksandr Lenin

October 2nd, 2018

A binary relation R on a set A is the subset

$$
R \subseteq A \times A: x R y \Longleftrightarrow(x, y) \in R
$$

The relation $<$ on a set $A=\{1,2,3\}$ is the subset $\{(1,2),(1,3),(2,3)\}$.

Relation R on a set A is reflexive if every element x in A is related to itself. It means that

$$
\forall x \in A: x R x
$$

Example: the relation \leqslant on \mathbb{Z} is reflexive, but the relation $<$ is not.
R is called anti-reflexive if every element x in A is not related to itself.

$$
\forall x \in A: \neg(x R x)
$$

Relation $<$ on \mathbb{Z} is anti-reflexive.

Relation R on a set A is called symmetric if for any pair of elements x, y in A, it holds that if x is related to y, then y is related to x.

$$
\forall x, y \in A: x R y \Longrightarrow y R x .
$$

Example: the relation $=$ on \mathbb{R} is symmetric, since for all $a, b \in \mathbb{R}$ it holds that $a=b$ implies $b=a$.

Relation R on a set A is anti-symmetric if for any pair of elements x, y in A it holds that if x is related to y, and y is related to x, then x and y are the same element (written as $x=y$).

$$
\forall x, y \in A: x R y \wedge y R x \Longrightarrow x=y
$$

Example: relation \leqslant is anti-symmetric, since

$$
x \leqslant y \wedge y \leqslant x \Longrightarrow x=y
$$

Relation R on a set A is asymmetric if it holds that if x is related to y, then y is unrelated to x.

$$
\forall x, y \in A: x R y \Longrightarrow \neg(y R x)
$$

Example: the relation $<$ on \mathbb{R} is asymmetric, and the condition $x<y$ implies that $y \nless x$.

$$
x<y \Longrightarrow \neg(y<x) .
$$

Relation R on a set A is transitive if

$$
\forall x, y, z \in A: x R y \wedge y R z \Longrightarrow x R z
$$

Example: relations $<$ and $=$ are transitive. It can be seen that

$$
\begin{aligned}
& a<b \wedge b<c \Longrightarrow a<c \\
& a=b \wedge b=c \Longrightarrow a=c
\end{aligned}
$$

Proposition 1

Symmetric and transitive relation is reflexive.
Proof.
By symmetry,

$$
x R y \Longrightarrow y R x
$$

By transitivity,

$$
x R y \wedge y R x \Longrightarrow x R x
$$

Therefore, symmetry and transitivity imply reflexivity.

Proposition 2
Asymmetric relation is anti-reflexive.
Proof.
By asymmetry, $x R y \Longrightarrow \neg(y R x)$. Since y can be any element, let $y=x$. Then $x R x \Longrightarrow \neg(x R x)$. Hence, asymmetry implies anti-reflexivity.

Proposition 3

Anti-reflexive and transitive relation is asymmetric.

Proof.

Indeed, it can be seen that $x R y \wedge y R x$ is always false. By transitivity,

$$
x R y \wedge y R x \Longrightarrow x R x
$$

which contradicts with anti-reflexivity. So $x R y$ and $y R x$ cannot happen at the same time. Therefore,

$$
x R y \Longrightarrow \neg(y R x)
$$

Proposition 4

Anti-reflexive and transitive relation is anti-symmetric.
Proof.
By transitivity,

$$
x R y \wedge y R x \Longrightarrow x R x
$$

which contradicts with the anti-reflexivity property. And so, the implication

$$
x R y \wedge y R x \Longrightarrow x=y
$$

is true.

Corollary 1

If the relation is anti-reflexive and transitive, then anti-symmetry is the same as symmetry.

Proposition 5

Anti-reflexive relation is anti-symmetric iff it is asymmetric.

Proof.

First, we show that if anti-reflexive relation is asymmetric, then it is anti-symmetric. We need to show that $x R y \wedge y R x \Longrightarrow x=y$. By transitivity, $x R y \wedge y R x \Longrightarrow x R x$, which contradicts with anti-reflexivity. Therefore, the implication $x R y \wedge y R x \Longrightarrow x=y$ is true.

Secondly, we show that if anti-reflexive relation is anti-symmetric, then it is asymmetric. We need to show that $x R y \Longrightarrow \neg(y R x)$. Let $x R y$. If $y R x$ is true, then by anti-symmetry, it would imply $x=y$. If $y R x$ is true and $y=x$, then $x R x$ is true. A contradiction with anti-reflexivity. And so, if $x R y$ is true, $y R x$ must be false. Hence $x R y \Longrightarrow \neg(y R x)$.

Relation R on a set A is connex if any pair of elements in A is comparable under R.

$$
\forall x, y \in A: x R y \underline{\vee} y R x
$$

R is called trichotomous if any pair of elements in A is either comparable under R or is the same element.

$$
\forall x, y \in A: x R y \underline{\vee} y R x \underline{\vee}=y
$$

THANK YOU FOR
 YOUR ATTENTION ANY QUESTIONS?

