1. Find multiplicative modular inverse

$$2^{-1} \text{ in } \mathbb{Z}_7$$
 $4^{-1} \text{ in } \mathbb{Z}_{11}$ $9^{-1} \text{ in } \mathbb{Z}_{26}$ $2^{-1} \text{ in } \mathbb{Z}_6$

2. Find additive inverse

$$-3 \text{ in } \mathbb{Z}_5$$
 $-4 \text{ in } \mathbb{Z}_{10}$

3. How many invertible elements?

$$\mathbb{Z}_6^{\times}$$
 \mathbb{Z}_{6}^{\times} \mathbb{Z}_{11}^{\times}

- 4. Which elements have multiplicative inverses in \mathbb{Z}_8 and \mathbb{Z}_{20} ?
- 5. Write out addition and multiplication tables in \mathbb{Z}_5 and \mathbb{Z}_8 .
- 6. Solve the following linear equations

$$x + 3 \equiv 2 \pmod{5}$$
 $5 + 6 \equiv x \pmod{11}$ $5x + 2 \equiv 3 \pmod{7}$ $4x + 3 \equiv 11 \pmod{12}$ $x - 4 \equiv 7 \pmod{12}$ $4x \equiv 2 \pmod{19}$ $4x + 3 \equiv 5 \pmod{13}$ $2x + 1 \equiv 9x - 4 \pmod{23}$ $5x - 1 \equiv 3x + 1 \pmod{26}$

7. Solve the systems of linear equations

$$\begin{cases} a+b \equiv 17 \pmod{26} \\ 2a+b \equiv 0 \pmod{26} \end{cases} \qquad \begin{cases} a+b \equiv 17 \pmod{26} \\ 4a+b \equiv 1 \pmod{26} \end{cases}$$

$$\begin{cases} a+b \equiv 17 \pmod{26} \\ 3a+b \equiv 0 \pmod{26} \end{cases} \qquad \begin{cases} 5a+b \equiv 21 \pmod{26} \\ 16a+b \equiv 10 \pmod{26} \end{cases}$$

$$\begin{cases} 8a+b \equiv 8 \pmod{26} \\ 5a+b \equiv 13 \pmod{26} \end{cases}$$