Definitions

Definition 1 (Subset). Set A is a subset of a set B (written $A \subseteq B$) if $a \in A \Longrightarrow a \in B$.
Definition 2 (Equality of sets). Sets A and B are equal (written $A=B$) if $A \subseteq B \wedge B \subseteq$ A.

Definition 3 (Proper subset). Set A is a proper subset of B (written $A \subset B$) if $A \subseteq$ $B \wedge A \neq B$

Definition 4 (Empty set). Emptyset (\varnothing) is defined as a set containing no elements: $\forall x: x \notin \varnothing$.

Definition 5 (Union of sets). Union of sets A and B is a set $A \cup B=\{x: x \in A \vee x \in B\}$.
Definition 6 (Intersection of sets). Intersection of sets A and B is a set $A \cap B=\{x$: $x \in A \wedge x \in B\}$.

Definition 7 (Disjoint sets). Sets A and B are disjoint if $A \cap B=\varnothing$.
Definition 8 (Set compliment). Let U be the universal class, and let $A \subset U$. The compliment of A is the set $A^{\prime}=\{x \in U: x \notin A\}$.

Definition 9 (Set difference). The difference of sets A and B is the set $A \backslash B=A \cap B^{\prime}=$ $\{x \in A: x \notin B\}$.

Definition 10 (Cartesian product of sets). Cartesian product of sets A and B is the set $A \times B=\{(a, b): a \in A \wedge b \in B\}$.

Definition 11 (Binary Relation). Relation R is a binary relation between sets A and B if $R \subseteq A \times B$.

The notation $x R y$ means $(x, y) \in R$. Let $R \subseteq A \times B$. The set A is called the domain of R, and the set B is the co-domain of R.

Definition 12 (Endorelation). Relation R is an endorelation on set A if $R \subseteq A^{2}=A \times A$.
Definition 13 (Image of a set under a binary relation). Let $R \subseteq A \times B$ be a binary relation. Then the image of A under R is the set $\operatorname{Im}(R)=\{y \in B: \exists x \in A: x R y\}$.

Definition 14 (Preimage of a set under binary relation). Let $R \subseteq A \times B$ be a binary relation, and let $Y \subseteq B$. Then the preimage of Y under $R\left(\right.$ written $\left.R^{-1}(Y)\right)$ is $R^{-1}(Y)=$ $\{x \in A: \exists y \in Y: x R y\}$.

Definition 15 (Field of a binary relation). Let R be a binary relation. Then Field $(R)=$ $\operatorname{Dom}(R) \cup \operatorname{Im}(R)$.

Definition 16 (Injection). A binary relation $R \subseteq A \times B$ is injective if $\forall x, z \in A, \forall y \in$ $B: x R y \wedge z R y \Longrightarrow x=z$.

In example, the relation $R=\left\{\left(x, x^{2}\right)\right\} \subseteq \mathbb{Z} \times \mathbb{Z}$ is not injective, since both $(2,4)$ and $(-2,4)$ are in R, and hence injectivity does not hold.

Definition 17 (Surjection). A binary relation $R \subseteq A \times B$ is surjective if $\forall y \in B \exists x \in$ $A: x R y$.

In example, the relation $R=\left\{\left(x, x^{2}\right)\right\} \subseteq \mathbb{Z} \times \mathbb{Z}$ is not surjective, since no preimage exists for $3 \in \mathbb{Z}$, since $\sqrt{3} \notin \mathbb{Z}$.

Definition 18 (Bijection). Injective and surjective binary relation is called bijective.
Definition 19 (Set cardinality). Cardinality of a set A, denoted as $|A|$, is a measure of the number of elements in the set.
$|A|=|B|$ if there exists a bijection $f: A \rightarrow B$.
$|A| \leqslant|B|$ if there exists an injection $f: A \rightarrow B$.
$|A|<|B|$ if there exists an injection $f: A \rightarrow B$, but no bijection $g: A \rightarrow B$ exists.
Definition 20 (Countable set). Set A is countable if $|A|=|B|$, where $B \subseteq \mathbb{N}$.
Definition 21 (Countably infinite set). Set A is countably infinite if there exists a bijection $f: A \rightarrow \mathbb{N}$.

Definition 22 (Reflexivity). Binary relation R on a set A is reflexive if every element x in A is related to itself: $\forall x \in A: x R x$.

In example, relation \leqslant on \mathbb{Z} is reflexive, since $\forall a \in \mathbb{Z}: a \leqslant a$. However, the relation $<$ is not reflexive, since $a<a$ does not hold.

Definition 23 (Anti-reflexivity). Binary relation R is called anti-reflexive if every element x in A is not related to itself: $\forall x \in A: \neg(x R x)$.

In example, relation $<$ on \mathbb{Z} is anti-reflexive, since $\forall a \in \mathbb{Z}: a \nless a$.
Definition 24 (Symmetry). Relation R on a set A is called symmetric if $\forall x, y \in A$: $x R y \Longrightarrow y R x$.
In example, equality relation $=$ on \mathbb{R} is symmetric, since $\forall a, b \in \mathbb{R}: a=b \Longrightarrow b=a$.
Definition 25 (Anti-symmetry). Relation R on a set A is anti-symmetric if $\forall x, y \in$ $A: x R y \wedge y R x \Longrightarrow x=y$.

In example, relation \leqslant is anti-symmetric, since $x \leqslant y \wedge y \leqslant x \Longrightarrow x=y$.
Definition 26 (Asymmetry). Relation R on a set A is asymmetric if $\forall x, y \in A$: $x R y \Longrightarrow \neg(y R x)$.

In example: relation $<$ on \mathbb{R} is asymmetric, since $x<y \Longrightarrow \neg(y<x)$.
Definition 27 (Transitivity). Relation R on a set A is transitive if $\forall x, y, z \in A$: $x R y \wedge y R z \Longrightarrow x R z$.

In example, it can be seen that relations $<$ and $=$ are transitive

$$
\begin{aligned}
& a<b \wedge b<c \Longrightarrow a<c \\
& a=b \wedge b=c \Longrightarrow a=c
\end{aligned}
$$

Definition 28 (Connexity). Relation R on a set A is connex if $\forall x, y \in A: x R y \vee y R x$.
Definition 29 (Trichotomy). R is called trichotomous if $\forall x, y \in A: x R y \vee y R x \vee x=y$.
Definition 30 (Left-total binary relation). A binary relation $R \subseteq A \times B$ is left-total if $\forall x \in A \exists y \in B: x R y$.

Definition 31 (Partial function). A binary relation $R \subseteq A \times B$ is a partial function if $\forall x \in A, \forall y, z \in B: x R y \wedge x R z \Longrightarrow y=z$.

In example, mapping $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $y=\sqrt{x}$ is not a partial function, since $2=\sqrt{4}=-2$.

Definition 32 (Function, Mapping). A binary relation $R \subseteq A \times B$ is a function (or a mapping) $F: A \rightarrow B$ if it is left-total, injective, and is a partial function.

The notation $a \stackrel{f}{\mapsto} b$ means that element $a \in A$ is mapped to element $b \in B$ by mapping $f: A \rightarrow B$. Equivalently, the same can be expressed as $f(a)=b$. In other words, mapping $F: A \rightarrow B$ maps every element $a \in A$ to a unique element $b \in B$.

Definition 33 (Linear Map). A linear mapping or linear transformation is a map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by a matrix.

In example, given a 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

we can define a map $T_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
\forall(x, y) \in \mathbb{R}^{2}: T_{A}(x, y)=(a x+b y, c x+d y) .
$$

This is actually matrix multiplication, that is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y} .
$$

Definition 34 (Permutation). For any set S, a bijective mapping $\pi: S \rightarrow S$ is called a permutation.

Suppose $S=\{1,2,3\}$. Define a map $\pi: S \rightarrow S$ by

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
\pi(1) & \pi(2) & \pi(3)
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
$$

It is easy to verify that this map is bijective, hence this map is a permutation of S.
Definition 35 (Identity Map). The identity map $i d_{S}$ is such that $\forall s \in S: s \mapsto s$.
In example, for $S=\{1,2,3\}$, the identity map $i d_{S}$ is

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
\pi(1) & \pi(2) & \pi(3)
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) .
$$

Definition 36 (Function Composition). A composition of function $f: A \rightarrow B$ and $g: B \rightarrow C$ is a new function $h: A \rightarrow C$ defined by

$$
(g \circ f)(x)=g(f(x)) .
$$

Note that $g(f(x))=(g \circ f)(x) \neq(f \circ g)(x)=f(g(x))$.

For example, consider the following sets

$$
A=\{1,2,3\} \quad B=\{a, b, c\} \quad C=\{x, y, z\}
$$

Consider maps

$$
\begin{aligned}
& f: A \rightarrow B \text { defined by }\{1 \mapsto b, 2 \mapsto c, 3 \mapsto a\}, \\
& g: B \rightarrow C \text { defined by }\{a \mapsto z, b \mapsto z, c \mapsto x\}
\end{aligned}
$$

The composition $g \circ f: A \rightarrow C$ is defined by $\{1 \mapsto z, 2 \mapsto x, 3 \mapsto z\}$.
It can be seen than the composition $f \circ g$ is not a valid map.
Definition 37 (Inverse Map). Let $f: A \rightarrow B$ be a function. The inverse map f^{-1} : $B \rightarrow A$ is a function such that

$$
\begin{aligned}
& f \circ f^{-1}=i d_{B} \\
& f^{-1} \circ f=i d_{A}
\end{aligned}
$$

Function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by $f(x)=\ln (x)$ has an inverse $f^{-1}(x)=e^{x}$.

$$
\begin{aligned}
& \left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f\left(e^{x}\right)=\ln e^{x}=x \\
& \left(f^{-1} \circ f\right)(x)=f^{-1}(\ln x)=e^{\ln x}=x
\end{aligned}
$$

