Definitions

Definition 1 (Subset). Set A is a subset of a set B (written $A \subseteq B$) if $a \in A \implies a \in B$.

Definition 2 (Equality of sets). Sets A and B are equal (written A = B) if $A \subseteq B \land B \subseteq A$.

Definition 3 (Proper subset). Set A is a proper subset of B (written $A \subset B$) if $A \subseteq B \land A \neq B$

Definition 4 (Empty set). Emptyset (\emptyset) is defined as a set containing no elements: $\forall x : x \notin \emptyset$.

Definition 5 (Union of sets). Union of sets A and B is a set $A \cup B = \{x : x \in A \lor x \in B\}$.

Definition 6 (Intersection of sets). Intersection of sets A and B is a set $A \cap B = \{x : x \in A \land x \in B\}$.

Definition 7 (Disjoint sets). Sets A and B are disjoint if $A \cap B = \emptyset$.

Definition 8 (Set compliment). Let U be the universal class, and let $A \subset U$. The compliment of A is the set $A' = \{x \in U : x \notin A\}$.

Definition 9 (Set difference). The difference of sets A and B is the set $A \setminus B = A \cap B' = \{x \in A : x \notin B\}$.

Definition 10 (Cartesian product of sets). Cartesian product of sets A and B is the set $A \times B = \{(a, b) : a \in A \land b \in B\}$.

Definition 11 (Binary Relation). Relation R is a binary relation between sets A and B if $R \subseteq A \times B$.

The notation xRy means $(x,y) \in R$. Let $R \subseteq A \times B$. The set A is called the domain of R, and the set B is the co-domain of R.

Definition 12 (Endorelation). Relation R is an endorelation on set A if $R \subseteq A^2 = A \times A$.

Definition 13 (Image of a set under a binary relation). Let $R \subseteq A \times B$ be a binary relation. Then the image of A under R is the set $Im(R) = \{y \in B : \exists x \in A : xRy\}$.

Definition 14 (Preimage of a set under binary relation). Let $R \subseteq A \times B$ be a binary relation, and let $Y \subseteq B$. Then the preimage of Y under R (written $R^{-1}(Y)$) is $R^{-1}(Y) = \{x \in A : \exists y \in Y : xRy\}$.

Definition 15 (Field of a binary relation). Let R be a binary relation. Then $Field(R) = Dom(R) \cup Im(R)$.

Definition 16 (Injection). A binary relation $R \subseteq A \times B$ is injective if $\forall x, z \in A, \forall y \in B : xRy \land zRy \implies x = z$.

In example, the relation $R = \{(x, x^2)\} \subseteq \mathbb{Z} \times \mathbb{Z}$ is not injective, since both (2, 4) and (-2, 4) are in R, and hence injectivity does not hold.

Definition 17 (Surjection). A binary relation $R \subseteq A \times B$ is surjective if $\forall y \in B \ \exists x \in A : xRy$.

In example, the relation $R = \{(x, x^2)\} \subseteq \mathbb{Z} \times \mathbb{Z}$ is not surjective, since no preimage exists for $3 \in \mathbb{Z}$, since $\sqrt{3} \notin \mathbb{Z}$.

Definition 18 (Bijection). Injective and surjective binary relation is called bijective.

Definition 19 (Set cardinality). Cardinality of a set A, denoted as |A|, is a measure of the number of elements in the set.

- |A| = |B| if there exists a bijection $f: A \to B$.
- $|A| \leq |B|$ if there exists an injection $f: A \to B$.
- |A| < |B| if there exists an injection $f: A \to B$, but no bijection $g: A \to B$ exists.

Definition 20 (Countable set). Set A is countable if |A| = |B|, where $B \subseteq \mathbb{N}$.

Definition 21 (Countably infinite set). Set A is countably infinite if there exists a bijection $f: A \to \mathbb{N}$.

Definition 22 (Reflexivity). Binary relation R on a set A is **reflexive** if every element x in A is related to itself: $\forall x \in A : xRx$.

In example, relation \leq on \mathbb{Z} is reflexive, since $\forall a \in \mathbb{Z} : a \leq a$. However, the relation < is not reflexive, since a < a does not hold.

Definition 23 (Anti-reflexivity). Binary relation R is called **anti-reflexive** if every element x in A is not related to itself: $\forall x \in A : \neg(xRx)$.

In example, relation < on \mathbb{Z} is anti-reflexive, since $\forall a \in \mathbb{Z} : a \nleq a$.

Definition 24 (Symmetry). Relation R on a set A is called **symmetric** if $\forall x, y \in A$: $xRy \implies yRx$.

In example, equality relation = on \mathbb{R} is symmetric, since $\forall a, b \in \mathbb{R} : a = b \implies b = a$.

Definition 25 (Anti–symmetry). Relation R on a set A is **anti–symmetric** if $\forall x, y \in A : xRy \land yRx \implies x = y$.

In example, relation \leq is anti-symmetric, since $x \leq y \land y \leq x \implies x = y$.

Definition 26 (Asymmetry). Relation R on a set A is **asymmetric** if $\forall x, y \in A$: $xRy \implies \neg(yRx)$.

In example: relation < on \mathbb{R} is asymmetric, since $x < y \implies \neg (y < x)$.

Definition 27 (Transitivity). Relation R on a set A is **transitive** if $\forall x, y, z \in A$: $xRy \land yRz \implies xRz$.

In example, it can be seen that relations < and = are transitive

$$a < b \land b < c \implies a < c$$
,
 $a = b \land b = c \implies a = c$.

Definition 28 (Connexity). Relation R on a set A is **connex** if $\forall x, y \in A : xRy \vee yRx$.

Definition 29 (Trichotomy). R is called **trichotomous** if $\forall x, y \in A : xRy \lor yRx \lor x = y$.

Definition 30 (Left-total binary relation). A binary relation $R \subseteq A \times B$ is left-total if $\forall x \in A \ \exists y \in B : xRy$.

Definition 31 (Partial function). A binary relation $R \subseteq A \times B$ is a partial function if $\forall x \in A, \forall y, z \in B : xRy \land xRz \implies y = z$.

In example, mapping $f: \mathbb{Z} \to \mathbb{Z}$ defined by $y = \sqrt{x}$ is not a partial function, since $2 = \sqrt{4} = -2$.

Definition 32 (Function, Mapping). A binary relation $R \subseteq A \times B$ is a function (or a mapping) $F: A \to B$ if it is left-total, injective, and is a partial function.

The notation $a \stackrel{f}{\mapsto} b$ means that element $a \in A$ is mapped to element $b \in B$ by mapping $f: A \to B$. Equivalently, the same can be expressed as f(a) = b. In other words, mapping $F: A \to B$ maps every element $a \in A$ to a *unique* element $b \in B$.

Definition 33 (Linear Map). A linear mapping or linear transformation is a map $\mathbb{R}^n \to \mathbb{R}^m$ given by a matrix.

In example, given a 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} ,$$

we can define a map $T_A: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$\forall (x,y) \in \mathbb{R}^2 : T_A(x,y) = (ax + by, cx + dy) .$$

This is actually matrix multiplication, that is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix} .$$

Definition 34 (Permutation). For any set S, a bijective mapping $\pi: S \to S$ is called a **permutation**.

Suppose $S = \{1, 2, 3\}$. Define a map $\pi : S \to S$ by

$$\begin{pmatrix} 1 & 2 & 3 \\ \pi(1) & \pi(2) & \pi(3) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} .$$

It is easy to verify that this map is bijective, hence this map is a permutation of S.

Definition 35 (Identity Map). The **identity map** id_S is such that $\forall s \in S : s \mapsto s$.

In example, for $S = \{1, 2, 3\}$, the identity map id_S is

$$\begin{pmatrix} 1 & 2 & 3 \\ \pi(1) & \pi(2) & \pi(3) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} .$$

Definition 36 (Function Composition). A **composition of function** $f: A \to B$ and $g: B \to C$ is a new function $h: A \to C$ defined by

$$(g \circ f)(x) = g(f(x))$$
.

Note that $g(f(x)) = (g \circ f)(x) \neq (f \circ g)(x) = f(g(x)).$

For example, consider the following sets

$$A = \{1, 2, 3\}$$
 $B = \{a, b, c\}$ $C = \{x, y, z\}$.

Consider maps

$$f: A \to B$$
 defined by $\{1 \mapsto b, 2 \mapsto c, 3 \mapsto a\}$, $g: B \to C$ defined by $\{a \mapsto z, b \mapsto z, c \mapsto x\}$.

The composition $g \circ f : A \to C$ is defined by $\{1 \mapsto z, 2 \mapsto x, 3 \mapsto z\}$.

It can be seen than the composition $f \circ g$ is not a valid map.

Definition 37 (Inverse Map). Let $f: A \to B$ be a function. The **inverse map** $f^{-1}: B \to A$ is a function such that

$$f \circ f^{-1} = id_B ,$$

$$f^{-1} \circ f = id_A .$$

Function $f: \mathbb{R}^+ \to \mathbb{R}$ defined by $f(x) = \ln(x)$ has an inverse $f^{-1}(x) = e^x$.

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(e^x) = \ln e^x = x$$
,
 $(f^{-1} \circ f)(x) = f^{-1}(\ln x) = e^{\ln x} = x$.

Definition 38 (Equivalence Relation). A binary relation R on a set X is an equivalence relation iff it is reflexive, symmetric and transitive.

Definition 39 (Set partition). A partition of a set X is a set of non-empty subsets $A_i \subset X$ such that they are pairwise disjoint $A_i \cap A_j = \emptyset \forall i \neq j$, and $\bigcup A_i = X$.

Any such subset A_i is an equivalence class under equivalence relation \sim . Every equivalence relation gives rise to a partition, and likewise if there exists a partition of some set, there exists an equivalence relation which generates this partition.

Definition 40 (Equivalence Class). An equivalence class of $x \in X$ under equivalence relation R, denoted as [x] is a set of elements that are equivalent under $R : [x] = \{y \in X : x \sim y\}$.

Definition 41 (Factor Set). The factor set of a set X under equivalence relation \sim , denoted as X/\sim , is a set consisting of representative of each of the equivalence classes in a partition. The cardinality of the factor set is equal to the number of equivalence classes in a partition generated by \sim .

Definition 42 (Setoid). A set with an equivalence relation on it is called a setoid.

Definition 43 (Partial Order). A (weak) partial order on a set X is reflexive, antisymmetric and transitive binary relation on X.

Definition 44 (Strict partial order). A strict partial order on a set X is anti-reflexive, asymmetric (and hence also anti-symmetric) and transitive relation on X.

Definition 45 (Partially Ordered Set). A set X with a partial order relation R on it, denoted as (X, R) is a partially ordered set, or a poset.

Definition 46 (Comparable Elements). Let X be a set partially ordered by R. $a, b \in X$ are comparable if $aRb \lor bRa$ is true, otherwise they are incomparable.

Definition 47 (Interval on a Partially Ordered Set). Let X be a set partially ordered by relations \leq and \leq . The following intervals can be defined on X for all $a, b \in X$:

$$[a,b] = \{x \in X : a \leqslant x \leqslant b\}$$

$$(a,b) = \{x \in X : a < x < b\}$$

$$[a,b] = \{x \in X : a < x \leqslant b\}$$

$$[a,b) = \{x \in X : a \leqslant x < b\}$$

Definition 48 (Total Order, Linear Order, Chain). A total order (also, linear order, a chain) is a connex partial order – a binary relation that is reflexive, anti–symmetric, transitive, and connex.

Definition 49 (Strict total order). A strict total order is a strict connex partial order.

Definition 50 (Totally Ordered Set). A totally ordered (also, linearly ordered) set is a set equipped with a total order relation.

Definition 51 (Minimal Element of a Poset). Let P be a set partially ordered by R, and let $S \subseteq P$. Element $m \in S$ is a minimal element of S if $\forall x \in S : xRm \implies x = m$.

Definition 52 (Maximal Element of a Poset). Let P be a set partially ordered by R, and let $S \subseteq P$. Element $m \in S$ is a maximal element of S if $\forall x \in S : mRx \implies x = m$.

Definition 53 (Least Element of a Poset). Let P be a set partially ordered by R, and let $S \subseteq P$. Element $l \in S$ is the least element of S if $\forall x \in S : lRx$.

Definition 54 (Greatest Element of a Poset). Let P be a set partially ordered by R, and let $S \subseteq P$. Element $g \in S$ is the greatest element of S if $\forall x \in S : xRg$.

Definition 55 (Minimum in a Totally Ordered Set). In case of a total order, the notions of minimal and least elements coincide, and such element is called minimum element.

Definition 56 (Maximum in a Totally Ordered Set). In case of a total order, the notions of maximal and greatest elements coincide, and such element is called maximum element.

Corollary 1. A finite chain always has a greatest and a least element.

Definition 57 (Upper Bound of a Partially Ordered Set). Let P be a set partially ordered by R. Let $S \subseteq P$. Element $\lambda \in P$ is an upper bound of S if $\forall x \in S : xR\lambda$.

Definition 58 (Lower Bound of a Partially Ordered Set). Let P be a set partially ordered by R. Let $S \subseteq P$. Element $\lambda \in P$ is a lower bound of S if $\forall x \in S : \lambda Rx$.

Definition 59 (Supremum of a partially ordered set). Let P be a set partially ordered by R. Let $S \subseteq P$. An upper bound I of S is a supremum (denoted as $\sup S$) if I is the least upper bound: $\forall U \in P : IRU$.

Definition 60 (Infimum of a partially ordered set). Let P be a set partially ordered by R. Let $S \subseteq P$. A lower bound I of S is an infimum (denoted as inf S) if I is the greatest lower bound: $\forall U \in P : URI$.

Definition 61 (Lattice). A lattice (L, \wedge, \vee) is a partially ordered set in which every two elements have a supremum and an infimum. It can be seen that a lattice is both meet—and join—semilattice.

Definition 62 (Bounded Lattice). A bounded lattice is an algebraic structure $(L, \vee, \wedge, 0, 1)$ such that

- (L, \vee, \wedge) is a lattice
- 0 (the lattice's bottom (\bot)) is an identity element for the join (\lor) operation: $\forall a \in L : a \lor 0 = a$.
- 1 (the lattice's top (\top)) is an identity element for the meet (\land) operation: $\forall a \in L : a \land 1 = a$.

Definition 63 (Complemented Lattice). A complemented lattice (L, \wedge, \vee) is a lattice in which every element $a \in L$ has a complement – an element $\neg a \in L$ satisfying $a \vee \neg a = 1$ and $a \wedge \neg a = 0$.

Definition 64 (Distributive Lattice). A lattice (L, \wedge, \vee) is distributive if $\forall x, y, z \in L$: $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$.

Definition 65 (Boolean algebra, Boolean lattice). A Boolean algebra $(L, \wedge, \vee, \neg, 0, 1)$ is a complemented distributive lattice.

A Boolean algebra gives rise to a Boolean ring, and vice versa.