1. Show that the set of all finite bitstrings $\{0,1\}^{*}$ is countable.
2. Describe a Turing machine that computes function $y=2 x+1$.
3. Show that $3 n^{2}+6 n+7=O\left(n^{2}\right)$.
4. Show that $2 n^{3}+6 n^{2}+6 n+1=O\left(n^{3}\right)$.
5. Show that $n^{3} \neq O\left(n^{2}\right)$.
6. Show that $n!\neq O\left(2^{n}\right)$.
7. Find functions $f(n)$ and $g(n)$ such that $f(n)=O(g(n)), g(n) \neq O(f(n))$, and $f(n) \neq o(g(n))$.
8. Given a list of functions in asymptotic notation, order them by growth rate (slowest to fastest).
9. Show that
(a) $\Theta\left(n \log _{2} n\right)$
(b) $\Theta\left(n^{2}\right)$
(c) $\Theta(n)$
(d) $\Theta(1)$
(e) $\Theta\left(2^{n}\right)$
(f) $\Theta\left(n^{3}\right)$
(g) $\Theta(n!)$
(h) $\Theta\left(\log _{2} n\right)$
(i) $\Theta\left(n^{2} \log _{2} n\right)$
(j) $\Theta\left(2^{n} \log ^{2} n\right)$
10. Check if the following conditions are true

$$
\begin{aligned}
& \text { (a) } \quad \Theta(n+30)=\Theta(3 n-1), \\
& \text { (b) } \Theta\left(n^{2}+2 n-10\right)=\Theta\left(n^{2}+3 n\right), \\
& \text { (c) } \Theta\left(n^{3} \cdot 3 n\right)=\Theta\left(n^{2}+3 n\right) .
\end{aligned}
$$

11. Write each of the following functions in O notation.
(a) $5+0.001 n^{3}+0.025 n$
(b) $500 n+100 n^{1.5}$
(c) $0.3 n+5 n^{1.5}+2.5 n^{1.75}$
12. Show that
