
IDK1531 Advanced C++ Course
Types

Aleksandr Lenin

Tallinn University of Technology

February 11th, 2019

Lenin, A. (TUT) IDK1531 2/11/2019 1 / 62

Fundamental Types

void is an incomplete type with an empty set of values. This type cannot be
completed, objects of type void, arrays of elements of type void and references
to type void are disallowed.

std::nullptr_t is the type of the null pointer literal nullptr.

bool is a type capable of storing true and false values.

Lenin, A. (TUT) IDK1531 2/11/2019 2 / 62

Integral Types

int has width of at least 16 bits. In 32/64 bit systems is it common for int to
occupy at least 32 bits.

Size modifiers:

short – type will be optimized for space and will have width at least 16 bits.

long – type will have at least 32 bits.

long long – type will have at least 64 bits.

If any size modifiers are used, the int keyword may be omitted.

Lenin, A. (TUT) IDK1531 2/11/2019 3 / 62

Common data models are the following:
ILP32 or 4/4/4. int, long and pointer size is 32 bit.

32 bit OS (Microsoft Windows, Unix and Unix-like systems

Win32 API

LLP64 or 4/4/8. int and long size is 32 bits, pointer size is 64 bits.
64 bit Microsoft Windows

Win64 API

LP64 or 4/8/8. int size is 32 bits, long and pointer size is 64 bits.
64 bit Unix and Unix-like systems (Linux, Mac, *BSD, …)

Lenin, A. (TUT) IDK1531 2/11/2019 4 / 62

Two sigedness modifiers:

signed – type for sign representation, the most significant bit is reserved to
represent the sign.

unsigned – type for unsigned representation.

Lenin, A. (TUT) IDK1531 2/11/2019 5 / 62

Computations using unsigned integral types are performed modulo the size
of the value space.

I.e., adding two unsigned int type variables a and b is computed as
a + b mod 232.

Adding two unsigned char type variables a and b is computed as a + b mod 28.

Example
unsigned char a = 100;
unsigned char b = 200;
unsigned char c = a + b;
std::cout << (int) c << std::endl; // prints 44
std::cout << (300 % 256) << std::endl; // prints 44

Lenin, A. (TUT) IDK1531 2/11/2019 6 / 62

Overflowing a signed type results in undefined behavior.

Example
char d{127}; d++;
std::cout << (int) d << std::endl; // prints −128. This is UB.

Operations between signed and unsigned integers produce an unsigned result.

Example
unsigned a = 10;
int b = −15;
std::cout << (a+b) << std::endl; // prints 4294967291

Lenin, A. (TUT) IDK1531 2/11/2019 7 / 62

Fixed width integer types are the following:

int8_t, int16_t, int32_t, int64_t – signed integer types with width exactly
8, 16, 32, 64 bits.

uint8_t, uint16_t, uint32_t, uint64_t – unsigned integer types with width exactly
8, 16, 32, 64 bits.

[u]int_fast8_t, [u]int_fast16_t, [u]int_fast32_t, [u]int_fast64_t – fastest signed
integer type with width of at least 8, 16, 32, 64 bits.

[u]int_least8_t, [u]int_least16_t, [u]int_least32_t, [u]int_least64_t – smallest integer
type with width 8, 16, 32, 64 bits.

Lenin, A. (TUT) IDK1531 2/11/2019 8 / 62

Character Types

char – the type for character representation that can be efficiently processed by
the target system.

The sigedness of char depends on the compiler and the target platform. The
char type defaults to

unsigned char on ARM, PowerPC architectures

signed char on Intel x86 and x86_64 architectures.

wchar_t – a type for wide character representation.

Usually has size 32 bits, sufficient to represent the entire Unicode character set.

Exception: Windows. The size of wchar_t is 16 bits, and it can encode UTF-16
character set.

Lenin, A. (TUT) IDK1531 2/11/2019 9 / 62

Fixed size character types are the following.

char8_t – type for UTF-8 character set representation.

char16_t – type for UTF-16 character set representation.

char32_t – type for UTF-32 character set representation.

The C++ standard guarantees that:
1 == sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long) <= sizeof(long long).

Lenin, A. (TUT) IDK1531 2/11/2019 10 / 62

Floating Point Types

Depending on FPU coprocessor, typically these types are:

float – IEEE-754 32 bit single precision floating point type.

double – IEEE-754 64 bit double precision floating point type.

long double – extended precision floating point type.

The type long double is not regulated by IEEE-754 and depends on the
compiler and target architecture. On Intel x86 and x86_64 architectures, the
type long double defaults to 80 bit x87 floating point type.

Floating point numbers support special values

infinity to represent a positive infinity.

nan to represent a NaN.

Lenin, A. (TUT) IDK1531 2/11/2019 11 / 62

CV Type Qualifiers

For any type T, including incomplete types, excluding reference and function
types, there are 3 possible specifications of type T, namely:

1 const T – const-qualified type T. An object of a constant type cannot be
modified. An attempt to modify such an object directly results in a
compile-time error, attempt to modify it indirectly (through a reference
or a pointer) results in undefined behavior.

2 volatile T – volatile-qualified type T. Prevents the compiler from
optimizing the code where such a type is present, since it is assumed that
such a type may be changed and the compiler may not be aware of it.

3 const volatile T – const-volatile-qualified type T. An object behaves as a
constant and volatile object.

Lenin, A. (TUT) IDK1531 2/11/2019 12 / 62

Type conversions w.r.t. cv-qualifications.
unqualified < const < const volatile
unqualified < volatile < const volatile

References and pointers to less cv-qualified types may be implicitly converted
to references and pointers to more cv-qualified types.

To convert a pointer or a reference of a more qualified type to a pointer or a
reference to a less cv-qualified type, const_cast must be used.

The cv-qualification of an array is the same as the cv-qualification of its
elements.

Lenin, A. (TUT) IDK1531 2/11/2019 13 / 62

The mutable specifier permits modification of a class member even if the
containing object is declared const.

Example
const struct {

int a;
mutable int b;

} x = {0,0};

x.a++; // compilation−time error
x.b++; // mutable, modification is permitted
std::cout << x.a << x.b << std::endl; // prints 01

Lenin, A. (TUT) IDK1531 2/11/2019 14 / 62

Reference Types

A reference is an alias to an existing object or function.

A reference needs to be initialized to refer to an object. Uninitialized
references result in compilation-time errors.

A reference of some type T may be initialized with:
1 an object of type T.
2 a function of type T.
3 an object implicitly convertible to type T.

Once initialized, the referred object cannot be changed, the reference sticks to
the object it refers to.

Lenin, A. (TUT) IDK1531 2/11/2019 15 / 62

A reference is initialized:

when a named lvalue or rvalue reference variable is initialized

in a function call when one or more arguments are reference type

when a function returns a reference type

when a non-static reference type member is initialized

Lenin, A. (TUT) IDK1531 2/11/2019 16 / 62

A reference may refer to a complete type. I.e., there are no references to void.

Reference is not an object and therefore references do not necessarily occupy
storage (although some compilers may allocate storage).

For the same reason, there are no references to references.

References are not cv-qualified. A ”const reference to type T” is an ordinary
reference to type const T.

The lifetime of a reference begins when its initialization is complete and ends
when the storage duration ends (as if it were a scalar object).

The lifetime of the referred-to object may end before the lifetime of the
reference. If this happens, such a reference is called a dangling reference.

Using dangling references is undefined behavior.

Lenin, A. (TUT) IDK1531 2/11/2019 17 / 62

An lvalue reference declarator
T& [attr] identifier

declares identifier as an lvalue reference to type T.

lvalue references are used to alias existing objects or functions, optionally with
a different cv-qualification.

Example
int x = 5; // a variable of type int
int& rx = x; // an lvalue reference to int
const int& crx = x; // an lvalue reference to const int

std::cout << x << ” ” << rx << ” ” << crx << std::endl; // prints 5 5 5
rx += 2; // it is ok to assign a new value to an lvalue reference
crx += 2; // error, cannot assign a read−only reference
std::cout << x << ” ” << rx << ” ” << crx << std::endl; // prints 7 7 7

Lenin, A. (TUT) IDK1531 2/11/2019 18 / 62

An rvalue reference declarator
T&& [attr] identifier

declares identifier as an rvalue reference to type T, optionally with different
cv-qualification.

rvalue references can be used to extend the lifetime of temporary objects.
lvalue references to const can extend the lifetime of temporary objects as well,
but are not modifiable through them.

Example
int x = 5; // integer of type int
const int& lrx = x + x; // an lvalue reference to const int
int&& rrx = x + x; // an rvalue reference to int

std::cout << x << ” ” << lrx << ” ” << rrx << std::endl; // prints 5 10 10
lrx += 10; // error, cannot assign a read−only reference
rrx += 10; // can modify through reference to non−const
std::cout << x << ” ” << lrx << ” ” << rrx << std::endl; // prints 5 10 20

Lenin, A. (TUT) IDK1531 2/11/2019 19 / 62

If a reference is bound to a temporary or to a subobject, the lifetime of the
temporary is extended to match the lifetime of the reference.

Exceptions to this rule:

a temporary bound to the return value of a function returning a reference
is destroyed immediately after the function exits and such a function
always returns a dangling reference.

a temporary bound to a reference argument in a function call exists only
in the function scope. If the function returns a reference, it becomes a
dangling reference.

a temporary bound to a reference in the initializer used in a new
expression exists until the end of the full expression containing that new
expression, the lifetime is not extended to match the lifetime of the
initialized object.

Lenin, A. (TUT) IDK1531 2/11/2019 20 / 62

A reference may refer to an object that is equal or less cv-qualified.

Example
int x = 2; // a variable of type int
int & rx = x; // equal cv−qualification
const int & crx = x; // more cv−qualified, ok
int & rrx = crx; // error: less cv−qualified
const int & rrx = crx; // ok

In the last line, the lvalue reference rrx is not bound to crx (there are no
references to references, remember?). rrx is bound to the same object to which
crx is bound. In this case, it is int x;

Use const_cast<T> to cast more cv-qualified reference to a less cv-qualified
reference.
Example

int x = 2;
const int & crx = x; // a reference to const int
int & rx = crx; // error, less cv−qualified
int& rx = const_cast<int&>(crx); // ok

Lenin, A. (TUT) IDK1531 2/11/2019 21 / 62

You may declare lvalue references to functions.

Example
void f (int a) { std::cout << a << std::endl; } // a function of type void(int)
int g() { return 2; } // a function of type int(void)
void (&rf)(int) = f; // an lvalue reference to function f()
int (&rg)() = g; // an lvalue reference to function g()

and references to arrays

Example
int data[3];
int (&rdata)[3] = data;

Lenin, A. (TUT) IDK1531 2/11/2019 22 / 62

With the exception of a const qualified lvalue reference, lvalue references cannot
be bound to temporaries, while rvalue references can

Example
int& ra = 1; // error, cannot bind lvalue reference to rvalue
int&& rra = 1; // ok, bound to rvalue
const int& cra = 1; // ok, bound to read−only lvalue

rvalue references cannot bind to lvalues.

Example
int n = 2;
int&& rn1 = n; // error, cannot bind to lvalue
int&& rn2 = static_cast<int&&>(n); // ok, cast n to an rvalue
float&& rn3 = n; // ok, bound to an rvalue temporary 2.0

Lenin, A. (TUT) IDK1531 2/11/2019 23 / 62

It is possible to create situations in which the lifetime of the referred object
ends, but the reference remains accessible. Such cases are referred as
dangling references. Accessing such a reference is undefined behavior.

A common example, is returning a reference to an automatic variable.

Example
std:: string& f() {

std:: string s(”Hello, World!”);
return s; // s is destroyed

}

std:: string& sref = f(); // f() returns a dangling reference
std::cout << sref; // undefined behavior, read attempt from a dangling reference

Lenin, A. (TUT) IDK1531 2/11/2019 24 / 62

Temporaries’ lifetime restrictions. Consider the following structure
struct S { int x; const int& lref; int&& rref; };

If initialized as S s{1,2,3};, the temporary 2 is bound to s. lref , temporary 3 is
bound to s. rref, the lifetimes of the temporaries is extended to match the
lifetime of object s.

If initialized as a pointer S∗ p = new S{1,2,3}, the temporary 2 is bound to s. lref ,
temporary 3 is bound to s. rref, but the lifetime of the references ended at the
end of the new statement, and p−>lref and p−>rref are dangling references.

A function returning a reference to a temporary returns a dangling reference.

Example
const int& f() { return 1; }
const int& result = f(); // f() returns a dangling reference

Lenin, A. (TUT) IDK1531 2/11/2019 25 / 62

Forwarding references is a special kind of references that preserve the value
category of a function argument, and makes it possible to forward it using
std:: forward, which

forwards lvalues as lvalues or rvalues

forwards rvalues as rvalues

prohibits forwarding lvalues as rvalues.

Two use cases
1 Function parameter of a function template declared as rvalue reference to

cv-unqualified type template parameter.
2 auto&&, except when deduced from a brace-initialized list. auto&& is the

safest way to refer to elements in ranged-for loops.

Example
for (auto&& e: f()) {

// e is a forwarding reference
}

auto&& a = {1, 2, 3}; // a is not a forwarding reference

Lenin, A. (TUT) IDK1531 2/11/2019 26 / 62

Pointer Types

[attr] T [cv] ∗ [cv] identifier

A pointer is an object that stores an address of another object or a function
in memory.

Implications:

no pointers to references or bitfields exist

there exist pointers to pointers

there exist references to pointers

Lenin, A. (TUT) IDK1531 2/11/2019 27 / 62

Every pointer is one of:

a pointer to an object or a function – stores the address of the first byte
occupied by the object storage in memory

a pointer past the end of an object – stores the address of the first byte
after the end of storage occupied by the object

a null pointer nullptr – stores the zero address

a invalid (dangling) pointer – a pointer that points at a (nonexistent)
object whose lifeteime has ended

Attempts to use an invalid pointer or passing an invalid pointer as an
argument to a memory deallocation function is undefined behavior.

Lenin, A. (TUT) IDK1531 2/11/2019 28 / 62

The ”address-of” operator & returns the address of a given object in memory
and may be used to initialize a pointer.

The dereference operator ∗ may be used to access the pointed-to object.

Example
int x = 10, y = 3;
int∗ p = &x; // now p points to x
std::cout << ∗p; // dereferencing p, printing 10
p = &y; // now it points to y
∗p = 15; //dereferencing p, assigning new value to y
std::cout << ∗p; // printing the value of y, which is 15 now
int∗∗ pp = &p; // a pointer to p, aka a pointer to a pointer pointing at y
std::cout << ∗pp; // printing the address of p
std::cout << ∗∗pp; // printing the value of y

Lenin, A. (TUT) IDK1531 2/11/2019 29 / 62

For convenience, the −> operator allows to access members of an object via a
pointer. The call object−>member is a syntactic sugar, and is equivalent to
∗(obj).member.

Example
struct S { int x; } s;
struct S ∗ps = &s;
s.x = 2;
(∗ps).x = 2;
ps−>x = 2;

Lenin, A. (TUT) IDK1531 2/11/2019 30 / 62

A reference to a pointer, as any reference, is used to alias an object.

Example
int x = 3, y=5;
int∗ px = &x; // px is a pointer pointing at x
int∗& rpx = px; // rpx is a reference to px
rpx = &y; // now px points at y
∗rpx = 15; // now the value of y is 15
std::cout << ∗rpx; // prints 15
int∗&& rval = new int(5); // rval is an rvalue reference to a pointer to an integer
std::cout << rval; // prints the address allocated by new and stored in rval
std::cout << ∗rval; // prints 5 (the initialized value)
delete rval ; // deallocating dynamic memory

Lenin, A. (TUT) IDK1531 2/11/2019 31 / 62

If const keyword appears on the left of ∗, such a pointer points at a constant
type. You can modify the pointer, but cannot modify the pointed-to data.

Example
int x;
const int ∗ px = &x; // a pointer to const int
int const ∗ px2 = &x; // a pointer to const int
px2 = nullptr; // ok
∗px = 2; // error, modification of constant object

If const keyword appears on the right of ∗, such a pointer is a constant
pointer that points at a fixed address and cannot be modified. The
pointed-to object can still be modified.

Example
int x;
int ∗ const px = &x; // a constant pointer to an integer
px = nullptr; // error, modification of a constant pointer
∗px = 2; // ok, modification of a pointed−to non−const object

Lenin, A. (TUT) IDK1531 2/11/2019 32 / 62

Finally, if const appears on both sides of the ∗, such a pointer is known as a
constant pointer to a constant type. Modification of the pointer, as well as the
pointed-to object is not permitted.

Example
int x;
int const ∗ const px = &x; // a constant pointer to a const int
px = nullptr; // error, modification of a constant pointer
∗px = 2; // error, modification of a pointed−to const object

Due to implicit array-to-pointer conversion, an array variable is implicitly
casted to a pointer to its first element.

Example
int x [5]{1,2,3,4,5};
int∗ px = x; // px points at the first integer in array x
int∗ px2 = &x[0]; // px2 points at the first integer in array x
int (∗px3)[5] = &x; // px3 poins at an array of 5 integers

Lenin, A. (TUT) IDK1531 2/11/2019 33 / 62

Any pointer can be implicitly casted into a pointer to void. The inverse
conversion requires a static_cast call.

Example
char c; short s; int i ; long l ; long long ll ;
void ∗vpc = &c, ∗vps = &s, ∗vpi = &i, ∗vpl = &l, ∗vpll = &l;
char∗ pc = static_cast<char∗>(vpc);
short∗ ps = static_cast<short∗>(vps);
int∗ pi = static_cast<int∗>(vpi);
long∗ pl = static_cast<long∗>(vpl);
long long∗ pll = static_cast<long long ∗>(vpll);

Lenin, A. (TUT) IDK1531 2/11/2019 34 / 62

Pointers to functions

Example
void f() {}
int g(int a) { return a; }
int h(int k) { return 2∗k; }

void (∗pf)() = &f; // a pointer to a function f
void (∗pf2)() = f; // another pointer to a function f
void (∗pf3)() = nullptr; // a pointer to type void(void) initialized with zero address
int (∗pg)(int) = g; // a pointer to function g
pg(10); // g(10) is called
pg = h; // now pg points at function h
pg(10); // h(10) is called

Lenin, A. (TUT) IDK1531 2/11/2019 35 / 62

Pointers, with exception for type void∗, support increment and decrement
operations.

If a scalar k is added to a pointer of type T, then the pointer will point at a
new address, which is shifted by k ∗ sizeof(T) compared to the initial address
the pointer was pointing at.

Example
char∗ p = reinterpret_cast<char∗>(0x100);
std::cout << (void∗) p << std::endl; // 0x100
std::cout << (void∗) (p+1) << std::endl; // 0x101
std::cout << (void∗) (p+2) << std::endl; // 0x102

int∗ pi = reinterpret_cast<int∗>(0x100);
std::cout << pi << std::endl; // 0x100
std::cout << (pi+1) << std::endl; // 0x104
std::cout << (pi+2) << std::endl; // 0x108

Lenin, A. (TUT) IDK1531 2/11/2019 36 / 62

The random access operator [] allows to access objects at addresses relative
to the address stored by the pointer. Let p is a pointer to type T. Then p[i]
corresponds to the value at address p + i ∗ sizeof(T).

Example
char∗ pc = reinterpret_cast<char∗>(0x100);
short∗ ps = reinterpret_cast<short∗>(0x100);
int∗ pi = reinterpret_cast<int∗>(0x100);

std::cout << (void∗) pc << ” ” // 0x100
<< (void∗) &pc[1] << ” ” // 0x101
<< (void∗) &pc[2] << ” ” // 0x102
<< (void∗) &pc[3] << std::endl; // 0x103

std::cout << ps << ” ” // 0x100
<< &ps[1] << ” ” // 0x102
<< &ps[2] << ” ” // 0x104
<< &ps[3] << std::endl; // 0x106

std::cout << pi << ” ” // 0x100
<< &pi[1] << ” ” // 0x104
<< &pi[2] << ” ” // 0x108
<< &pi[3] << std::endl; // 0x10C

Lenin, A. (TUT) IDK1531 2/11/2019 37 / 62

Given two pointers of the same type, the difference between them yields the
number of elements of these types that fit into a given range.

Example
struct S { int a,b,c,d; };
void∗ begin = reinterpret_cast<void∗>(0x100);
void∗ end = reinterpret_cast<void∗>(0x120);
std::cout << static_cast<char∗>(end) − static_cast<char∗>(begin); // 32
std::cout << static_cast<short∗>(end) − static_cast<short∗>(begin); // 16
std::cout << static_cast<int∗>(end) − static_cast<int∗>(begin); // 8
std::cout << static_cast<long∗>(end) − static_cast<long∗>(begin); // 4
std::cout << static_cast<long long∗>(end) − static_cast<long long∗>(begin) // 4;
std::cout << static_cast<float∗>(end) − static_cast<float∗>(begin) // 8;
std::cout << static_cast<struct S∗>(end) − static_cast<struct S∗>(begin) // 2;

The only supported operations with pointers are

Adding a pointer and a scalar (positive, negative, or zero)

Subtracting two pointers of the same type

It is illegal to subtract pointers of different types, as well as adding two
pointers together. Such attempts will produce compilation time errors.

Lenin, A. (TUT) IDK1531 2/11/2019 38 / 62

Arrays
An array declaration declares an object of array type.
T name [[expr]] [attr];

where:

T is the type of elements in the array. It can be any fundamental type,
pointers, classes, enumerations, and other arrays of the same type. There
are no arrays with element type void, no arrays of references, or arrays of
functions.

name is any valid identifier.

[expr] an optional constant expression convertible to std:: size_t which
evaluates to a value greater than zero (since C++14).

[attr] optional attributes.

Example
int a [5]; declares a as an array object consisting of 5 continuously allocated
objects of type int.

Lenin, A. (TUT) IDK1531 2/11/2019 39 / 62

Applying cv-qualifications to array type applies the qualifiers to element type.

Example
const int a [5]; declares an array of 5 elements of type const int.

If an array is allocated dynamically (i.e. using new expression), its size is
allowed to be zero. Accessing allocated memory block of size 0 is undefined
behavior.

Example
int ∗a = new int[0]; // accessing a[0] or ∗a is UB
delete [] a; // it is still required to deallocate memory

An array arr of N elements may be accessed using the random access operator
[] as arr [0]... arr[N−1]. Indexing starts from zero!

Lenin, A. (TUT) IDK1531 2/11/2019 40 / 62

Arrays are lvalues, they have storage and an address. However, objects of
array type cannot be modified as a whole – they cannot appear on the left
hand size of an assignment operator.

Example
int a[2] = {0,1};
int b[2];
b = a; // error, invalid array assignment

However, due to the existence of an implicit copy-assignment operator

Example
struct s { int a [2]; } s = {1,2}, t;
t = s;

Lenin, A. (TUT) IDK1531 2/11/2019 41 / 62

When arrays appear in context where arrays are not expected, but pointers
are, this implicit conversion converts array type to a pointer to the first
element of the array.

Example
void f(int (&ra)[3]) {} // takes a reference to an array as argument
void g(int∗ pa) {} // takes a pointer to element type as argument

int main()
{

int a[3] = {1,2,3};
int ∗p = a;
cout << sizeof(a); // 12 = 3 ∗ sizeof(int) = 3 ∗ 4
cout << sizeof(p); // 8, notice 64−bit architecture
f(a); // ok
g(p); // ok
g(a); // ok

}

Lenin, A. (TUT) IDK1531 2/11/2019 42 / 62

An element type of an array may be an array type. In this case, such an array
is called multi-dimensional.

Example
// an array of 2 arrays of 3 elements each
int a [2][3] = { {1,2,3}, {4,5,6} };

Such an array can be thought of as a 2 × 3 matrix.

Example
int a [2]; // an array of 2 integers
int b [2][3]; // an array of 2 arrays of 3 integers
int c [2][3][4]; // an array of two 3x4 matrices of integers
int∗ pa = a; // a pointer to the first element in array a
int∗∗ pb = b; // error, b is not implicitly converted to int∗∗
int (∗pb)[3] = b; // b is converted to a pointer to the first row of b
int∗∗∗ pc = c; // error, c is not implicitly converted to int∗∗∗
int (∗pc) [3][4] = c; // c is converted to a pointer to the first 3x4 matrix in c

Lenin, A. (TUT) IDK1531 2/11/2019 43 / 62

If expr is ommitted, such an array is known as an array of unknown bound,
which is sort of an incomplete type, with exception when used with an
initializer.

Example
int a []; // error, incomplete type
int a[] = {1,2,3}; // initializes an array of 3 integers

Multidimensional arrays cannot have an unknown bound other than the first.

Example
int a [][3]; // error, incomplete type
int a [][3] = { {1,2,3}, {4,5,6} }; // the first dimension is 2
int a [2][] = { {1,2,3}, {4,5,6} }; // error, unbounded second dimension

Lenin, A. (TUT) IDK1531 2/11/2019 44 / 62

Pointers and references to arrays of unknown bound can be created, but
cannot be initialized or assigned with objects of known bound.

Example
extern int a [];
int (&ra)[] = a;
int (∗pa)[] = &a;
int (∗pa2)[2] = &a; // error

int b[2] = {0,1};
int (&rb)[] = b; // error
int (∗pb)[] = b; // error
int (&rb2)[2] = b;
int (∗pb2)[2] = &b;

Pointers to arrays of unknown bound

cannot participate in pointer arithmetic, but can be dereferenced

cannot be used on the left of a random access operator []

References and pointers to arrays of unknown bound cannot be used as
function arguments.

Lenin, A. (TUT) IDK1531 2/11/2019 45 / 62

Functions

[attr] [modifier] T identifier ([argument list]) [cv] [ref] [except] [attr]
[attr] [modifier] auto identifier ([argument list]) [cv] [ref] [except] [attr] [−> T]

[attr] any number of optional attributes

T return type, cannot be a function type or array type, but can be
pointer type or a reference to these types

[arg] an optional list of function arguments

[cv] optional cv-qualification, only allowed in non-static member function
declarations

[ref] optional ref-qualification, only allowed in non-static member function
declarations

[except] is dynamic exception specification or noexcept specification

Lenin, A. (TUT) IDK1531 2/11/2019 46 / 62

Function modifiers may be a combination of

explicit – the function cannot be used in implicit conversions and copy
initialization

static – a function with static or thread-local storage duration and
internal linkage

extern – a function with static or thread-local storage duration and
external linkage

thread_local – states that a function has thread-local storage

constexpr – declares that it is possible to evaluate the value of the function
at compile time

Lenin, A. (TUT) IDK1531 2/11/2019 47 / 62

inline – declares a function as inline, allows the compiler to substitute
function body in-place of function calls.

virtual – allows a class method to be dynamically bound.

final – specifies that a virtual function cannot be overridden

override – specifies that a virtual function overrides another virtual
function (ref modifier)

friend – grants a function access to private and protected members of the
class where the friend declaration appears

mutable – permits modification of the class member declared mutable even
if the containing object is declared const

Lenin, A. (TUT) IDK1531 2/11/2019 48 / 62

A function declaration bind a function type to a name.

Function declaration may appear in any scope. A function declaration at a
class scope declares a function to be a member of a class (unless a friend
specifier is used).

Non-member function definition may appear only in the namespace scope,
member function definition may appear in class scope.

If auto is used as the return type, the trailing return type may be omitted and
will be deduced by the compiler from the type of the returned expression.

Example
auto f() {

int x = 2;
return x; // the return type is deduced to be int

}

const auto& g(int& x) {
return x; // the return type is deduced to be const int&

}

Lenin, A. (TUT) IDK1531 2/11/2019 49 / 62

If there are multiple return statements, they must all deduce to the same
return type, to avoid ambiguity.

Example
auto a(int x) {

if (x > 0) return 2;
else return 2.5;

}

If there are no return statements, the deduced type is void.

Example
auto a() {}; // the return type is deduced to be void
auto∗ b() {}; // error, only plain auto type can be deduced from void
auto& c() {}; // error, only plain auto type can be deduced from void

Lenin, A. (TUT) IDK1531 2/11/2019 50 / 62

Once a return statement has been seen in a function, the return type deduced
from that statement can be re-used in the same function.

Example
auto f(int x) {

if (x > 0) return x; // the return type is deduced to be int
else return f(x+1); // f ’s return type is already known

}

If the return statement uses brace-initialized list, the return type deduction is
not allowed.

Example
auto f() { return {0,1}; } // error

Lenin, A. (TUT) IDK1531 2/11/2019 51 / 62

Function arguments may have default values in their declarations.

Example
int f(int a, int b=3) { return a + b; } // argument b has default value 3
std::cout << f(5,5) << std::endl; // will print 10 = 5 + 5
std::cout << f(5) << std::endl; // f(5,3) is called, will print 8 = 5 + 3

Arguments with default values must appear in the very last position of a
parameter list. In other words, all the arguments after the first argument with
a default value, must have default values.

Example
int f(int a=3, int b) { return a + b; } // argument a has default value 3
f(5); // ambiguity, is value 5 supplied as a value for a or b?
f(5,6) ; // no ambiguity

int g(int a=3, int b=4) { return a + b; }
g(); // returns 7 = 3+4
g(2,2); // returns 4 = 2 + 2
g(3); // ambiguity, is a==3 or b==3?

Lenin, A. (TUT) IDK1531 2/11/2019 52 / 62

In function declaration, the types of arguments are transformed according to
the following rules.

1 Argument declarators are used to determine the type of argument.
2 If the type is an array type (array of T or array of unknown bound of T),

it is converted to type pointer to T.
3 If the type is a function type T, it is converted to type pointer to T

(pointer to function).
4 top-level cv-qualifiers are dropped from the parameter type

For this reason, int f(int); and int f(const int); declare the same function.

Example
The following function declarations are the same:
int f(int a[3]) ;
int f(int []) ;
int f(int∗ a);
int f(int∗ const);
int f(int∗ volatile);

Lenin, A. (TUT) IDK1531 2/11/2019 53 / 62

Example
int f(int a); // declaration
int g(int [10]) ; // declaration

// definition
int f(int const a) {

return 0;
}

// definition
int g(int∗ p) {

return 0;
}

Function arguments, as well as the return type of a function, cannot be
incomplete types (i.e. declared but undefined).

Lenin, A. (TUT) IDK1531 2/11/2019 54 / 62

A function body may be one of the following:
1 a compound statement (regular function body)
2 a function try block - associates a sequence of catch statements with the

function body
3 explicitly deleted function definition =delete. Any use of a deleted function

is ill-formed and produces compilation errors.
4 explicitly defaulted function definition =default

Example
An example of a function try block
int f(int a) try {

return 0;
} catch (const std::exception& e) {

// exception handler
} catch (...) {

// exception handler
}

Lenin, A. (TUT) IDK1531 2/11/2019 55 / 62

Example
Example of a deleted function
struct mytype {

void∗ operator new(std::size_t) = delete;
void∗ operator new[](std::size_t) = delete;

};

mytype∗ f = new mytype; // error, use of deleted function new(std::size_t)
mytype∗ g = new mytype[10]; // error, use of deleted function new[](std::size_t)

A previously declared function cannot be redeclared as deleted, the deleted
definition of a function must be the first declaration in a translation unit.
Example
An invalid definition
int f() ; // the first declaration of int f()
int f() = delete; // deleted defintition of int f() , the second declaration

A valid definition
int f() = delete; // the first declaration, deleted definition

Lenin, A. (TUT) IDK1531 2/11/2019 56 / 62

Enumeration

An enumeration is a type whose values are restricted to pre-defined set of
values.

Unscoped enumerations are of the form
enum [struct|class] name { enumerator[=constexpr], enumerator[=constexpr], ... }
enum [struct|class] name : type { enumerator[=constexpr], enumerator[=constexpr], ... }
enum [struct|class] name : type;

In the first type of declaration, the enumerator type is unspecified, it is an
implementation-defined integral type.

In the second and third declarations, the enumerator type is fixed.

Each enumerator is associated with the value of underlying type.

If struct or class keywords are used, the enumeration is unscoped, otherwise it
is scoped.

Lenin, A. (TUT) IDK1531 2/11/2019 57 / 62

Example
Unscoped enumeration examples:
enum Color = { RED, GREEN, BLUE };
enum Level = { LOW, MEDIUM=10, HIGH=100 };
enum Level2 : char { LOW=’l’, MEDIUM=’m’, HIGH=’h’ };
Color c = RED;
Level l = LOW;

Example
Scoped enumeration examples:
enum struct Color { RED, GREEN, BLUE };
enum class Level { LOW, MEDIUM=10, HIGH=100 };
enum class Level2 : char { LOW=’l’, MEDIUM=’m’, HIGH=’h’ };
Color c = Color::RED;
Level l = Level::MEDIUM;

Lenin, A. (TUT) IDK1531 2/11/2019 58 / 62

Smart Pointers

Lenin, A. (TUT) IDK1531 2/11/2019 59 / 62

Lambda expressions

Lenin, A. (TUT) IDK1531 2/11/2019 60 / 62

Type std:: function

Lenin, A. (TUT) IDK1531 2/11/2019 61 / 62

Lenin, A. (TUT) IDK1531 2/11/2019 62 / 62

