ITC8190
 Mathematics for Computer Science
 Preparation for the exam

Aleksandr Lenin

December 18th, 2018

Equivalence and Order Relations on Sets. Set Partitions.

To show that a given relation R is an equivalence relation on a set A, you need to show that R is reflexive, symmetric and transitive.
Example 1
Equality $(=)$ is an equivalence relation, since

1. Reflexivity: $\forall a \in A: a=a$.
2. Symmetry: $\forall a, b \in A: a=b \Longrightarrow b=a$.
3. Transitivity: $\forall a, b, c \in A: a=b, b=c \Longrightarrow a=c$.

Example 2

The difference relation \sim defined by

$$
(a, b) \sim(c, d) \Longleftrightarrow a+d=b+c
$$

is an equivalence relation on $\mathbb{N} \times \mathbb{N}$, since

1. Reflexivity: $\forall(a, b) \in \mathbb{N} \times \mathbb{N}$:

$$
(a, b) \sim(a, b) \Longleftrightarrow a+b=a+b .
$$

2. Symmetry: $\forall(a, b),(c, d) \in \mathbb{N} \times \mathbb{N}$:

$$
\begin{aligned}
(a, b) \sim(c, d) & \Longrightarrow a+d=b+c=b+c=a+d \\
& \Longrightarrow(c, d) \sim(a, b) .
\end{aligned}
$$

Example 2

The difference relation \sim defined by

$$
(a, b) \sim(c, d) \Longleftrightarrow a+d=b+c
$$

is an equivalence relation on $\mathbb{N} \times \mathbb{N}$, since
3. Transitivity: $\forall(a, b),(c, d),(e, f) \in \mathbb{N} \times \mathbb{N}$:

$$
\begin{aligned}
& (a, b) \sim(c, d), \quad(c, d) \sim(e, f) \Longrightarrow \\
& a+d=b+c, \quad c+f=d+e \Longrightarrow \\
& a+d=b+d+e-f \Longrightarrow \\
& a+f=b+e \Longrightarrow \\
& (a, b) \sim(e, f) .
\end{aligned}
$$

Example 3

The factor space $\mathbb{Z}_{15} / \bmod 4$ consists of equivalence classes

$$
\begin{array}{ll}
{[0]=\{0,4,8,12\}} & {[1]=\{1,5,9,13\}} \\
{[2]=\{2,6,10,14\}} & {[3]=\{3,7,11\}}
\end{array}
$$

Example 4
The factor space $\mathbb{N} \times \mathbb{N} / \sim$ with \sim defined by
$(a, b) \sim(c, d) \Leftrightarrow a-b=c-d$ consists of equivalence classes

$$
\mathbb{Z}=\{\ldots,[-3],[-2],[-1],[0],[1],[2],[3], \ldots\}
$$

Example 5

To show that equivalence classes [0], [1], [2], [3] form a partition on \mathbb{Z}_{15}, we need to show that

$$
\begin{aligned}
& {[0] \cap[1]=\{0,4,8,12\} \cap\{1,5,9,13\}=\emptyset} \\
& {[0] \cap[2]=\{0,4,8,12\} \cap\{2,6,10,14\}=\emptyset} \\
& {[0] \cap[3]=\{0,4,8,12\} \cap\{3,7,11\}=\emptyset} \\
& {[1] \cap[2]=\{1,5,9,13\} \cap\{2,6,10,14\}=\emptyset} \\
& {[1] \cap[3]=\{1,5,9,13\} \cap\{3,7,11\}=\emptyset} \\
& {[2] \cap[3]=\{2,6,10,14\} \cap\{3,7,11\}=\emptyset}
\end{aligned}
$$

Example 5

To show that equivalence classes [0], [1], [2], [3] form a partition on \mathbb{Z}_{15}, we need to show that

$$
\begin{aligned}
& {[0] \cup[1] \cup[2] \cup[3]=} \\
& \{0,4,8,12\} \cup\{1,5,9,13\} \cup\{2,6,10,14\} \cup\{3,7,11\}= \\
& \{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14\}=\mathbb{Z}_{15} .
\end{aligned}
$$

Example 6

To show that \leqslant is a partial order on \mathbb{Z}, you need to show

1. Reflexivity: $\forall a \in \mathbb{Z}: a \leqslant a$
2. Anti-symmetry: $\forall a, b \in \mathbb{Z}: a \leqslant b \wedge b \leqslant a \Longrightarrow a=b$
3. Transitivity: $\forall a, b, c \in \mathbb{Z}: a \leqslant b \leqslant c \Longrightarrow a \leqslant c$

Example 7

To show that $<$ is a strict partial order on \mathbb{Z}, you need to show

1. Anti-reflexivity: $\forall a \in \mathbb{Z}: a \nless a$
2. Asymmetry: $\forall a, b \in \mathbb{Z}: a<b \Longrightarrow b \nless a$
3. Transitivity: $\forall a, b, c \in \mathbb{Z}: a<b<c \Longrightarrow a<c$

Greatest Common Divisor Euclidean Algorithm Bézout Identity

The greatest common divisor can be calculated using the Euclidean algorithm.

Example 8

$$
\begin{aligned}
\operatorname{gcd}(17,25) & =\operatorname{gcd}(17,25 \bmod 17)=\operatorname{gcd}(8,17 \bmod 8) \\
& =\operatorname{gcd}(1,8)=\operatorname{gcd}(1,8 \bmod 1)=1 \\
\operatorname{gcd}(52,36) & =\operatorname{gcd}(36,52 \bmod 36)=\operatorname{gcd}(16,36 \bmod 16) \\
& =\operatorname{gcd}(4,16 \bmod 4)=4 \\
\operatorname{gcd}(11,18) & =\operatorname{gcd}(11,18 \bmod 11)=\operatorname{gcd}(7,11 \bmod 7) \\
& =\operatorname{gcd}(4,7 \bmod 4)=\operatorname{gcd}(3,4 \bmod 3) \\
& =\operatorname{gcd}(1,3 \bmod 1)=1
\end{aligned}
$$

Example 9

To justify that $6=\operatorname{gcd}(24,30)$, write out all the divisors

$$
\begin{aligned}
& \operatorname{Div}(24)=\{1,2,3,4,6,8,12,24\} \\
& \operatorname{Div}(30)=\{1,2,3,5,6,10,15\}
\end{aligned}
$$

Then write out common divisors of both integers

$$
\operatorname{Div}(24) \cap \operatorname{Div}(30)=\{1,2,3,6\}
$$

Any subset of \mathbb{N} is well ordered by \leqslant. In this ordering, 6 is the greatest common divisor, since

$$
1 \leqslant 2 \leqslant 3 \leqslant 6
$$

Table: Extended Euclidean Algorithm

$$
\begin{aligned}
& \begin{array}{cc||cc}
11 & 18 & a & b \\
\hline 11 & 7 & a & b-a \\
4 & 7 & 2 a-b & b-a \\
4 & 3 & 2 a-b & 2 b-3 a \\
1 & 3 & 5 a-3 b & 2 b-3 a \\
1 & 0 & 5 a-3 b & 11 b-18 a
\end{array} \\
& 1=\operatorname{gcd}(11,18)=5 \cdot 11+(-3) \cdot 18 .
\end{aligned}
$$

Euler phi function Euler Theorem

Fermat Little Theorem

Example 10

$\varphi(36)=\varphi\left(2^{2} \cdot 3^{2}\right)=36 \cdot\left(1-\frac{1}{2}\right) \cdot\left(1-\frac{1}{3}\right)=\frac{36 \cdot 2}{2 \cdot 3}=12$.
Since $\operatorname{gcd}(4,9)=1$, then $\varphi(36)=\varphi(4) \cdot \varphi(9)$.

$$
\begin{aligned}
\varphi(36) & =\varphi(4) \cdot \varphi(9)=4 \cdot\left(1-\frac{1}{2}\right) \cdot 9 \cdot\left(1-\frac{1}{3}\right) \\
& =\frac{4 \cdot 9 \cdot 2}{2 \cdot 3}=12
\end{aligned}
$$

If p is prime, then $\varphi(p)=p-1$.

$$
\begin{aligned}
& \varphi(11)=10, \\
& \varphi(38)=\varphi(2) \cdot \varphi(19)=18 .
\end{aligned}
$$

Euler Theorem states that if n and a are coprime positive integers, then

$$
a^{\varphi(n)} \equiv 1 \quad(\bmod n)
$$

It follows from the Euler's theorem that the multiplicative modular inverse of a modulo n is $a^{\varphi(n)-1}$.

$$
\frac{1}{a}=\frac{a^{\varphi(n)}}{a}=a^{\varphi(n)} \cdot a^{-1}=a^{\varphi n-1} \bmod n
$$

Fermat little theorem states that if n and a are coprime positive integers, then

$$
a^{n-1} \equiv 1 \quad(\bmod n)
$$

Fermat little theorem is a private case of the Euler theorem where n is prime, then $\varphi(n)=n-1$, and we obtain Fermat little theorem.

Congruences. Invertibility modulo n. Solutions to $a x \equiv c \bmod n$.

Congruence is an equivalence relation on the ring of integers \mathbb{Z}.

Congruence is a surjective ring-homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}_{n}$.
Two integers a and b are congruent modulo n if their difference is a multiple of n.

Integers congruent to n belong to the same equivalence class $[n]$.

Example 11
Equivalence class of 3 modulo 7 is

$$
[3]=\{\ldots,-25,-18,-11,-4,3,10,17,24, \ldots\}
$$

An integer a is invertible modulo n iff a is coprime to n.

Example 12

5 is invertible modulo 6. However, 2 and 3 are invertible modulo 5 , but not modulo 6 .

The number of invertible elements modulo n is exactly $\varphi(n)$.
Example 13
There are 10 invertible elements modulo 11, since $\varphi(11)=10$. There are 4 invertible elements modulo 12 , since

$$
\varphi(12)=\varphi(3) \cdot \varphi(4)=2 \cdot 4 \cdot\left(1-\frac{1}{2}\right)=4
$$

Example 14

Every element a has an additive inverse modulo n.

$$
\begin{array}{llll}
-2 \equiv 3 & (\bmod 5) & -3 \equiv 2 & (\bmod 5) \\
-2 \equiv 4 & (\bmod 6) & -3 \equiv 3 & (\bmod 6)
\end{array}
$$

Example 15

Equation $2 x \equiv 3(\bmod 5)$ is solvable, since 2 is invertible modulo 5 (since $\operatorname{gcd}(2,5)=1$). The solution is $x \equiv 2^{-1} \cdot 3 \bmod 5=3 \cdot 3 \bmod 5=4$.

Example 16

Equation $2 x \equiv 3(\bmod 6)$ is not solvable, since

1. 2 is not invertible modulo $6($ since $\operatorname{gcd}(2,6)=2 \neq 1)$
2. $\operatorname{gcd}(2,6)=2 \nmid 3$

Example 17

Equation $2 x \equiv 4(\bmod 6)$ is solvable, since

1. 2 is not invertible modulo $6($ since $\operatorname{gcd}(2,6)=2 \neq 1)$
2. $\operatorname{gcd}(2,6)=2 \mid 4$

Every solution satisfying $x \equiv 2(\bmod 3)$ also satisfies $2 x \equiv 4(\bmod 6)$.

Chinese Remainder Theorem

Example 18

Solve for x.

$$
\begin{cases}x \equiv 2 & (\bmod 4) \\ x \equiv 3 & (\bmod 5)\end{cases}
$$

1. Express the moduli in the form of a Bézout identity

$$
\operatorname{gcd}(4,5)=1=(-1) \cdot 4+1 \cdot 5
$$

2. Obtain the solution

$$
x=-3 \cdot 4+2 \cdot 5=-2 \equiv 18 \quad(\bmod 20) .
$$

Example 19

Solve for x.

$$
\begin{cases}x \equiv 2 & (\bmod 5) \\ x \equiv 3 & (\bmod 6) \\ x \equiv 6 & (\bmod 9)\end{cases}
$$

Is not a CRT instance, since $\operatorname{gcd}(6,9)=3 \neq 1$.

Example 20

Solve for x.

$$
\begin{cases}x \equiv 2 & (\bmod 5) \\ x \equiv 4 & (\bmod 6) \\ x \equiv 6 & (\bmod 7)\end{cases}
$$

1. Calculate Bézout identities

Table: $\operatorname{gcd}(5,42)$ as B'ezout identity

5	42	a	b
5	2	a	$b-8 a$
1	2	$17 a-2 b$	$b-8 a$
1	0	$17 a-2 b$	$5 b-42 a$

$$
\operatorname{gcd}(5,42)=17 \cdot 5+(-2) \cdot 42=1
$$

Example 20

Solve for x.

$$
\begin{cases}x \equiv 2 & (\bmod 5) \\ x \equiv 4 & (\bmod 6) \\ x \equiv 6 & (\bmod 7)\end{cases}
$$

1. Calculate Bézout identities

Table: $\operatorname{gcd}(6,35)$ as B'ezout identity

$$
\begin{array}{cc||cc}
6 & 35 & a & b \\
\hline 6 & 5 & a & b-5 a \\
1 & 5 & 6 a-b & b-5 a \\
1 & 0 & 6 a-b & 6 b-35 a \\
\operatorname{gcd}(6,35)=6 \cdot 6+(-1) \cdot 35=1 .
\end{array}
$$

Example 20

Solve for x.

$$
\begin{cases}x \equiv 2 & (\bmod 5) \\ x \equiv 4 & (\bmod 6) \\ x \equiv 6 & (\bmod 7)\end{cases}
$$

1. Calculate Bézout identities

Table: $\operatorname{gcd}(7,30)$ as B'ezout identity

7	30	a	b
7	2	a	$b-4 a$
1	2	$13 a-3 b$	$b-4 a$
1	0	$13 a-3 b$	$7 b-30 a$

$\operatorname{gcd}(7,30)=13 \cdot 7+(-3) \cdot 30=1$.

Example 20

Solve for x.

$$
\begin{cases}x \equiv 2 & (\bmod 5) \\ x \equiv 4 & (\bmod 6) \\ x \equiv 6 & (\bmod 7)\end{cases}
$$

1. Calculate Bézout identities

$$
\begin{aligned}
& \operatorname{gcd}(5,42)=17 \cdot 5+(-2) \cdot 42=1 \\
& \operatorname{gcd}(6,35)=6 \cdot 6+(-1) \cdot 35=1 \\
& \operatorname{gcd}(7,30)=13 \cdot 7+(-3) \cdot 30=1
\end{aligned}
$$

2. Obtain the solution

$$
x=2 \cdot(-2) \cdot 42-4 \cdot 35-6 \cdot 3 \cdot 30=202 \quad(\bmod 210)
$$

Mathematical Induction

Example 21

Show that for all $n \in \mathbb{N}, n>0$ it holds that

$$
1+2+3+\ldots+n=\frac{n(n+1)}{2} .
$$

It holds for $n=1$, since $\frac{1 \cdot(1+1)}{2}=1$.
Suppose it holds for some n. Then

$$
\begin{aligned}
1+2+3+\ldots+n+(n+1) & =\frac{n(n+1)}{2}+(n+1) \\
& =\frac{n(n+1)+2(n+1)}{2} \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

it holds for $n+1$. By induction, it holds for all n.

Example 22

Show that for all $n \in \mathbb{N}$, every integer in the form $10^{n+1}+3 \cdot 10^{n}+5$ is divisible by 9 .

It holds for $n=0$, since $10+3+5=18$ and $9 \mid 18$.
Suppose that $10^{n+1}+3 \cdot 10^{n}+5$ for some n is divisible by 9 . Then for $n+1$

$$
\begin{aligned}
& 10 \cdot 10^{n+1}+10 \cdot 3 \cdot 10^{n}+50-45= \\
& 10 \cdot\left(10^{n+1}+3 \cdot 10^{n}+5\right)-45
\end{aligned}
$$

By assumption $10^{n+1}+3 \cdot 10^{n}+5$ is divisible by 9 , hence also $10 \cdot\left(10^{n+1}+3 \cdot 10^{n}+5\right)$ is divisible by 9 . Since $9 \mid 45$, then also $10 \cdot\left(10^{n+1}+3 \cdot 10^{n}+5\right)-45$ is divisible by 9 .
By induction, $10^{n+1}+3 \cdot 10^{n}+5$ is divisible by 9 for all $n \in \mathbb{N}$.

Event Probabilities

Example 23

Given a uniformly distributed random variable X with range $R_{X}=\{1,2,3,4,5,6\}$, what is the probability to get an outcome that is even or greater than 3?

Let event A denote the event of even outcome, and event B denote the event of outcome greater than 3 .

Example 23

Events A and B are not mutually exclusive, since we can get even outcomes that are greater than 3, i.e. 4 or 6 . Hence

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\underbrace{\operatorname{Pr}[A \cap B]}_{\operatorname{Pr}[A] \cdot \operatorname{Pr}[A \mid B]}
$$

Events A and B are not independent, since even outcome influences the probability of the result being greater than 3 , and the result greater than 3 influences the probability of an even outcome. Hence,

$$
\begin{aligned}
\operatorname{Pr}[A \cup B] & =\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A] \cdot \operatorname{Pr}[A \mid B] \\
& =\frac{1}{2}+\frac{1}{2}-\frac{1}{2} \cdot \frac{2}{3}=\frac{2}{3} .
\end{aligned}
$$

Example 24

Given a uniformly distributed random variable X with range $R_{X}=\{1,2,3,4,5,6\}$, what is the probability to get an outcome 2 or greater than 5 ?

Let event A denote the event of outcome 2 , and event B denote the event of outcome greater than 5. Events A and B are mutually exclusive, hence

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]=\frac{1}{6}+\frac{2}{6}=\frac{1}{2} .
$$

Example 25

Given a uniformly distributed random variable X with range $R_{X}=\{1,2,3,4,5,6\}$, and Y with range $R_{Y}=\{A, B, C, D\}$ what is the probability to get an outcome greater than 2 for X and outcomes A or C for Y ?

Define events:
A variable X produces outcome greater than 2
B variable Y produces outcome A
C variable Y produces outcome C
Events A, B, C are all independent, and B and C are mutually exclusive. Hence

$$
\begin{aligned}
\operatorname{Pr}[A \cap B \cup C] & =\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \cup C]=\operatorname{Pr}[A] \cdot(\operatorname{Pr}[B]+\operatorname{Pr}[C]) \\
& =\frac{2}{3} \cdot\left(\frac{1}{4}+\frac{1}{4}\right)=\frac{2}{3} \cdot \frac{2}{4}=\frac{1}{3} .
\end{aligned}
$$

Example 26

In TUT, the probability that a student attends the information systems' course as well as spanish lessons is 0.087. The probability that a student attends information systems' course is 0.68 . What is the probability that a student attends spanish lessons, given that he attends information systems' course?

Define events:
A the student attends information systems' course

B the student attends spanish lessons
Applying the chain rule:
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A] \Longrightarrow \operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}=\frac{0.087}{0.68}$

Example 27

Given two events A and B with the following probabilities

$$
\operatorname{Pr}[A \cap B]=0.2 \quad \operatorname{Pr}[A]=0.4 \quad \operatorname{Pr}[B]=0.5,
$$

determine if events A and B are independent.

$$
\begin{aligned}
& \operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\frac{0.2}{0.5}=0.4=\operatorname{Pr}[A], \\
& \operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}=\frac{0.2}{0.4}=0.5=\operatorname{Pr}[B] .
\end{aligned}
$$

Events A and B are independent, since conditional and unconditional probabilities are equal. It can also be seen that $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$ is the product of two unconditional probabilities.

Example 28

The probability that the grass is wet is $\frac{9}{10}$, the probability that the grass is wet, given that it is raining, is $\frac{2}{3}$, and the probability that it is raining is $\frac{3}{10}$. What is the probability that it is raining, given that the grass is wet?

Define the events
A it is raining outside
B the grass is wet
We know that

$$
\operatorname{Pr}[A]=\frac{3}{10} \quad \operatorname{Pr}[B]=\frac{9}{10} \quad \operatorname{Pr}[B \mid A]=\frac{2}{3},
$$

we need to calculate $\operatorname{Pr}[A \mid B]$. By the Bayes rule,

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[B]}=\frac{3 \cdot 2 \cdot 10}{10 \cdot 3 \cdot 9}=\frac{2}{9} .
$$

Group Theory

Example 29

Show that $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is a group under the addition operation $(a, b)+(c, d)=(a+c, b+d)$.

The group operation above is clearly associative, due to associativity of addition in the ring of integers \mathbb{Z}.

Element $(0,0)$ is the is the identity element, since for all $(a, b) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}:(0,0)+(a, b)=(a+0, b+0)=(a, b)$.
Every element $(a, b) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ has a corresponding inverse element $(-a,-b) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, since $(a, b)+(-a,-b)=(0,0)$. The addition operation is closed, since for every two elements $(a, b),(c, d) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}$:

$$
(a, b)+(c, d)=(a+c, b+d) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

Hence, $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is a group under the operation of addition as stated above.

Example 30
Show that $H=\{(0,0),(0,1)\}$ is a subgroup of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
It can be seen that $H \subset \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and the corresponding Cayley table is

Table: Cayley table for H in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

$$
\begin{array}{c|cc}
+ & (0,0) & (0,1) \\
\hline(0,0) & (0,0) & (0,1) \\
(0,1) & (0,1) & (0,0)
\end{array}
$$

Example 31
Show that $H=\{(0,0),(0,1),(1,0)\}$ is not a subgroup of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

It can be seen that H is not closed under addition, since

$$
(0,1)+(1,0)=(1,1) \notin H .
$$

What is the structure of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$? Is it a cyclic group?

$$
\begin{aligned}
& \mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(0,0),(0,1),(1,0),(1,1)\} \\
& \langle(0,1)\rangle=\{(0,1),(0,0)\} \\
& \langle(1,0)\rangle=\{(1,0),(0,0)\} \\
& \langle(1,1)\rangle=\{(1,1),(0,0)\}
\end{aligned}
$$

Group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is not cyclic, since there are no element of order 4. Instead it contains 1 element of order 1 and 3 elements of order 2 (every such element is an inverse of itself).

Example 32

Is $U(9)$ cyclic? How many elements does $U(9)$ contain? What is the structure of $U(9)$?

Group $U(9)$ contains $\varphi(9)=\varphi\left(3^{2}\right)=9 \cdot\left(1-\frac{1}{3}\right)=6$ elements, they are $U(9)=\{1,2,4,5,7,8\}$.

$$
\begin{array}{ll}
\langle 2\rangle=\{2,4,8,7,5,1\}, & \langle 4\rangle=\{4,7,1\}, \\
\langle 5\rangle=\{5,7,8,4,2,1\}, & \langle 7\rangle=\{7,4,1\}, \\
\langle 8\rangle=\{8,1\} &
\end{array}
$$

Group $U(9)$ is generated by 2 and 5 , and hence is cyclic. The structure is 1 element of order 1,1 element of order 2 , 2 elements of order 3 and 2 elements of order 6 .

Example 33
Can $U(9)$ have elements of orders 4,5 ?
No, because by the Lagrange theorem, the order of an element must divide the order of a group. The order of $U(9)$ is $\varphi(9)=6$, and since 4 and 5 do not divide 6 , there cannot be any elements of orders 4 and 5 .

Group $U(9)$ can contain elements (and also subgroups) of orders 1, 2, 3, 6 - all the divisors of 6 .

Example 34

What is the order of 8 in $U(9)$?
Since $|\langle 8\rangle|=2$ and $\langle 8\rangle=\{8,1\}$ (element 8 generates a cyclic subgroup of order 2), the order of 8 is 2 . In other words, 2 is the minimal integer k such that $8^{k} \equiv 1(\bmod 9)$.

Example 35

What is the order of 5 in $U(9)$?
Element 5 generates $U(9)$, and the order of any generator is equal to the order of the group it generates. Hence, the order of 5 is $\varphi(9)=6$.

Example 36

Find inverse of 8 in $U(9)$.
Since $|\langle 8\rangle|=2$ and $\langle 8\rangle=\{8,1\}$ (element 8 generates a cyclic subgroup of order 2), the order of 8 is 2 . In other words, 2 is the minimal integer k such that $8^{k} \equiv 1(\bmod 9)$.

Since the order of 8 is 2 in $U(9)$, this element is an inverse of itself. So the inverse of 8 is 8 .

Example 37
What is the inverse of 5 in $U(9)$?
To find an inverse of 5 , we can use the Euler's formula

$$
5^{-1}=5^{\varphi(9)-1} \bmod 9=5^{5} \bmod 9=2 .
$$

Observe that $2 \cdot 5=5 \cdot 2=10 \equiv 1(\bmod 9)$. Hence, the inverse of 5 is 2 in $U(9)$.

Example 37

What is the inverse of 5 in $U(9)$?
The same result can be obtained by running the Extended Euclidean algorithm

Table: Extended Euclidean Algorithm

5	9	a	b
5	4	a	$b-a$
1	4	$2 a-b$	$b-a$
1	0	$2 a-b$	$5 b-9 a$

The inverse of 5 is the Bézout coefficient near 5 , which is 2 . Hence, 2 is the inverse of 5 in $U(9)$.

Example 38

Suppose a group G has an element of order 6, and an element of order 7 . What is the minimal order of G ?

By the Largange theorem, the order of G must be at least the least common multiple of 6 and 7 , which is 42 . Hence, G cannot contain less than 42 elements.

Example 39

Group G of order 12 contains an element of order 1, eleven elements of order 4 . Show that a subgroup of order 6 consists only of the identity element.

By the Lagrange theorem, a) the order of elements in a subgroup must divide the order of a subgroup, and b) the order of a subgroup must divide the order of the group.

Since $6 \mid 12$, such a subgroup may exist. However, such a group cannot contain any elements of order 11, since 11 久6, the only element that fits into such a subgroup is the identity element of order 1.

Example 40

What are the possible orders of proper non-cyclic subgroups where an element of order 4 could belong to in a group of order 24 ?

The subgroups of order 8 or 12 .
By the Lagrange theorem, an order of a subgroup we are looking for must be a) a multiple of 4 and b) a divisor of 24. Hence, possible orders of such subgroups are $4,8,12,24$.

A subgroup of order 24 is an improper subgroup, contradicting the question of the task.

An element of order 4 would generate the subgroup of order 4 , and hence this subgroup would be cyclic, again contradicting the question of the task.

The only subgroups that remain are the subgroups of orders 8 and 12 .

THANK YOU FOR
 YOUR ATTENTION ANY QUESTIONS?

