Homework 2 - Number Theory and Counting

Exercise 1. Calculate the greatest common divisors of numbers shown below and express this value in the form of the Bézout identity.
(a) $\operatorname{gcd}(12,17)$
(b) $\operatorname{gcd}(27,12)$
(c) $\operatorname{gcd}(65,5)$
(d) $\operatorname{gcd}(10,27)$

Solution.

(a) $\operatorname{gcd}(12,17)=(-7) \cdot 12+5 \cdot 17=1$
(b) $\operatorname{gcd}(27,12)=1 \cdot 27+(-2) \cdot 12=3$
(c) $\operatorname{gcd}(65,5)=0 \cdot 65+1 \cdot 5=5$
(d) $\operatorname{gcd}(10,27)=(-8) \cdot 10+3 \cdot 27=1$

Exercise 2. Answer the questions below.
(a) Which integers are congruent to $3 \bmod 7$?
(b) List integers in the equivalence class of $5 \bmod 10$?

Solution.

(a) Integers congruent to $3 \bmod 7$ are:

$$
[3]=\{\ldots,-18,-11,-4,3,10,17,24, \ldots\}
$$

(b) The equivalence class of $5 \bmod 10$ is

$$
[5]=\{\ldots,-35,-25,-15,-5,5,15,25,35, \ldots\}
$$

Exercise 3. Calculate
(a) $3 \bmod 5$
(b) $5 \bmod 3$
(c) $12 \bmod 3$
(d) $7 \bmod 4$
(e) $-5 \bmod 8$
(f) $\quad-4 \bmod 11$
(g) $6^{-1} \bmod 7$
(h) $2^{-1} \bmod 6$

Solution.

(a) 3
(b) 2
(c) 0
(d) 3
(e) 3
(f) 7
(g) 6
(h) none exists

In (g), one can see that $6^{-1}=6(\bmod 7)$, since $6 \cdot 6=36 \equiv 1(\bmod 7)$. In (h), one can see that 2 is not invertible modulo 6 , since $\operatorname{gcd}(2,6)=2 \neq 1$.

Exercise 4. Solve for x. If the equation is not solvable, provide a justification for it.
(a) $x+12 \equiv 7 \quad(\bmod 15)$
(b) $4 x \equiv 3 \quad(\bmod 7)$
(c) $15 x+12 \equiv 21 \quad(\bmod 27)$
(d) $8 x \equiv 3 \quad(\bmod 28)$

Solution.

(a) Subtracting 12 from both sides of the equation we obtain the solution $x \equiv 10(\bmod 15)$
(b) Multiplying both sides of the equation by 2 , we obtain the solution $x \equiv 6(\bmod 7)$
(c) Subtracting 12 from both sides of the equation we get $15 x \equiv 9(\bmod 27)$. Since gcd $(15,27)=$ 3 and $3 \mid 9$, then by dividing all three parameters of the equation by 3 , we obtain the reduced form $5 x \equiv 3(\bmod 9)$. Multiplying both sides of this equation by 2 , we get the solution $x \equiv 6$ $(\bmod 9)$. To verify, observe that $15 \cdot 6+12=102 \equiv 21(\bmod 27)$.
(d) Since $\operatorname{gcd}(8,28)=4$, but $3 \nmid 4$, this equation is not solvable.

Exercise 5. Solve for x. If the system is not solvable, provide a justification for it.
(a) $\begin{cases}5 a+b \equiv 0 & (\bmod 8) \\ 2 a+b \equiv 1 & (\bmod 8)\end{cases}$
(b) $\begin{cases}3 a+b \equiv 6 & (\bmod 7) \\ 6 a+b \equiv 4 & (\bmod 7)\end{cases}$
(c) $\begin{cases}5 a+b \equiv 4 & (\bmod 6) \\ 3 a+b \equiv 5 & (\bmod 6)\end{cases}$
(d) $\begin{cases}9 a+b \equiv 1 & (\bmod 10) \\ 5 a+b \equiv 5 & (\bmod 10)\end{cases}$

Solution.

(a) Subtracting the second equation from the first one, we get $3 a \equiv 7(\bmod 8)$. Multiplying both sides of the equation by 3 , we get $a \equiv 5(\bmod 8)$. From the first equation, we see that $b=-5 a=-25 \equiv 7(\bmod 8)$. Hence, $a \equiv 5(\bmod 8), b \equiv 7(\bmod 8)$.
(b) Subtracting the first equation from the second, we get $3 a \equiv 5(\bmod 7)$. Multiplying both sides of the equation by 5 , we get $a \equiv 4(\bmod 7)$. From the first equation, we get $b=6-3 a=$ $-6 \equiv 1(\bmod 7)$. Hence, $a \equiv 4(\bmod 7), b \equiv 1(\bmod 7)$.
(c) Subtracting the second equation from the first one, we get $2 a \equiv 5(\bmod 6)$. Since $\operatorname{gcd}(2,6)=2$ and $2 \nless 5$, the system has no solutions.
(d) Subtracting the second equation from the first one, we get $4 a \equiv 6(\bmod 10)$. Since $\operatorname{gcd}(4,10)=$ 2 and $2 \mid 6$, by dividing the equation by 2 , we get $2 a \equiv 3(\bmod 5)$. Multiplying both sides of the equation by 3 , we get $a \equiv 4(\bmod 5)$. From the first equation, we have $b=1-9 a=-35 \equiv 5$ $(\bmod 10)$. Hence, $a \equiv 4(\bmod 10), b \equiv 5(\bmod 10)$.

Exercise 6. Solve for x.
(a) $\begin{cases}x \equiv 2 & (\bmod 3) \\ x \equiv 4 & (\bmod 5)\end{cases}$
(b) $\begin{cases}x \equiv 3 & (\bmod 4) \\ x \equiv 7 & (\bmod 9)\end{cases}$
(c) $\begin{cases}x \equiv 3 & (\bmod 5) \\ x \equiv 5 & (\bmod 7) \\ x \equiv 6 & (\bmod 8)\end{cases}$
(d) $\left\{\begin{array}{lr}x \equiv 6 & (\bmod 10) \\ x \equiv 3 & (\bmod 13) \\ x \equiv 15 & (\bmod 19)\end{array}\right.$

Solution.

(a) By the Bézout identity, $\operatorname{gcd}(3,5)=2 \cdot 3+(-1) \cdot 5=1$. Therefore, $x \equiv 4 \cdot 3 \cdot 2+2 \cdot(-1) \cdot 5 \equiv 14$ $(\bmod 15)$.
(b) By the Bézout identity, $\operatorname{gcd}(4,9)=(-2) \cdot 4+1 \cdot 9=1$, and therefore $x \equiv 7 \cdot 4 \cdot(-2)+3 \cdot 1 \cdot 9=$ $-29 \equiv 7(\bmod 36)$.
(c) $N=5 \cdot 7 \cdot 8=280, N_{1}=\frac{280}{5}=56, N_{2}=\frac{280}{7}=40, N_{3}=\frac{280}{8}=35, \operatorname{gcd}(56,5)=1 \cdot 56-11 \cdot 5=1$, $\operatorname{gcd}(40,7)=3 \cdot 40-17 \cdot 7=1, \operatorname{gcd}(35,8)=3 \cdot 35-13 \cdot 8=1, x \equiv 3 \cdot 1 \cdot 56+5 \cdot 3 \cdot 40+6 \cdot 3 \cdot 35=$ $1398 \equiv 278(\bmod 280)$.
(d) $N=10 \cdot 13 \cdot 19=2470, N_{1}=\frac{2470}{10}=247, N_{2}=\frac{2470}{13}=190, N_{3}=\frac{2470}{19}=130, \operatorname{gcd}(247,10)=$ $3 \cdot 247-74 \cdot 10=1, \operatorname{gcd}(190,13)=5 \cdot 190-73 \cdot 13=1, \operatorname{gcd}(130,19)=6 \cdot 130-41 \cdot 19=1$, $x \equiv 6 \cdot 3 \cdot 247+3 \cdot 5 \cdot 190+15 \cdot 6 \cdot 130=18996 \equiv 1706(\bmod 2470)$.

Exercise 7. Calculate the value of the Euler's totient function $\varphi(n)$.
(a) $\varphi(11)$
(b) $\varphi(99)$
(c) $\varphi(20)$
(d) $\varphi(540)$

Solution.

(a) Since 11 is a prime number, $\varphi(11)=10$.
(b) The prime factorization of 99 is $99=3^{2} \cdot 11$, hence $\varphi(99)=99 \cdot\left(1-\frac{1}{3}\right) \cdot\left(1-\frac{1}{11}\right)=60$.
(c) The prime factorization of 20 is $20=2^{2} \cdot 5$, hence $\varphi(20)=20 \cdot\left(1-\frac{1}{2}\right) \cdot\left(1-\frac{1}{5}\right)=8$.
(d) $540=2^{2} \cdot 3^{3} \cdot 5$, hence $\varphi(540)=540 \cdot\left(1-\frac{1}{2}\right) \cdot\left(1-\frac{1}{3}\right) \cdot\left(1-\frac{1}{5}\right)=144$.

Exercise 8. (Reimo Palm) Andy has 5 toy ships and 6 toy planes. He wants to make an exhibition showing 3 models of one kind and 4 models of the other kind. How many ways there are to pick the exhibition set from his collection?

Solution. The exhibition may consist of either 3 ships and 4 planes or 4 ships and 3 planes, and thus there are $\binom{5}{3} \cdot\binom{6}{4}+\binom{5}{4} \cdot\binom{6}{3}=10 \cdot 15+5 \cdot 20=250$ possible sets.

Exercise 9. How many ways there are to line up n male and $n-1$ female students for a group photo so that in the resulting arrangement no two males stand side by side?

Solution. To avoid placing two males next to each other, the only option is to alternate males and females, starting from a male. There are n ! ways to arrange the n males among the n odd-numbered positions, and ($n-1$)! ways to arrange the $n-1$ females among the $n-1$ even-numbered positions in the line. Any arrangement of males can be combined with any arrangement of females, so we have $n!(n-1)$! possibilities in total.

Exercise 10. Solve the recurrence $A_{n+2}=A_{n+1}+2 A_{n}+1$, when $A_{0}=0, A_{1}=2$.

Solution.

- The corresponding homogeneus recurrence is $A_{n+2}^{\prime}=A_{n+1}^{\prime}+2 A_{n}^{\prime}$. Its characteristic equation $q^{2}-q-2=0$ gives $q_{1}=2, q_{2}=-1$. Thus the general solution is $A_{n}^{\prime}=c_{1} 2^{n}+c_{2}(-1)^{n}$.
- Generalizing the non-homogeneus member, we will look for particular solutions of the form $A_{n}^{\prime \prime}=\alpha$. Substituting into the recurrent rule, we get $\alpha=\alpha+2 \alpha+1$, which gives $\alpha=-\frac{1}{2}$. Thus $A_{n}^{\prime \prime}=-\frac{1}{2}$.
- The solution for the original recurrence must then be of the form $A_{n}=c_{1} 2^{n}+c_{2}(-1)^{n}-\frac{1}{2}$. Looking at the boundary conditions, we have $A_{0}=c_{1}+c_{2}-\frac{1}{2}=0$ and $A_{1}=2 c_{1}-c_{2}-\frac{1}{2}=2$ giving $c_{1}=1, c_{2}=-\frac{1}{2}$, for the solution

$$
A_{n}=1 \cdot 2^{n}+\left(-\frac{1}{2}\right) \cdot(-1)^{n}-\frac{1}{2}=2^{n}-\frac{(-1)^{n}+1}{2} .
$$

