
Knowledge representation

lecture 1: intro and overview

T. Tammet, TUT

KR and reasoning blocks

Knowledge representation

Background and basics.

Programming and databases. SQL: meaning and representation of facts.

Ontologies. RDF, RDFa, RDFS, OWL and friends. HTML annotations.

Natural language and restricted natural language

Reasoning

Propositional solvers

First order logic solvers

SMT solvers

Logics for uncertain knowledge

 Declarative and procedural representations

 Databases: meaning and representation of facts

 Scraping semistructured data

 Rules in logic: apps in planning, robotics, ...

 Various rule/logic languages

 Time, context, metainformation

 Probabilistic and nonmonotonic reasoning

Declarative and procedural
knowledge

Declarative and procedural?

In psychology:

Declarative knowledge is knowing "that" (e.g.,
that Washington D.C. is the capital of America),
as opposed to procedural knowledge is knowing
"how" (e.g., how to drive a car).

Declarative and procedural?

In programming:

 Declarative representation: data and rules
written in an easily processable simple format.

 Procedural representation: data and rules
written as an executable program.

 A strict distinction is - obviously - impossible

Example: configuration

 Option 1: directly in the code

 if (!strcmp(client_id,”Mycompany”))

 Option 2: macro defs

 #define OUR_ID “Mycompany”

 if (!strcmp(client_id,OUR_ID))

Example: configuration

 Option 3: configuration text file

 client_id: Mycompany

 if (!strcmp(client_id,get_conf(client_id)))

 Option 4: configuration xml file

 Option 5: configuration table in the database

Layers of declarative data

 First layer: plain facts like

 company_id: Mycompany

 limit1: 64

 Second layer: rules like

 if(X1<123 || X1>44 || X2<65) then result=12

Layers in psychology

 Episodic knowledge: memory for "episodes"
(i.e., the context of where, when, who with etc);
usually measured by accuracy measures, has
autobiographical reference.

 Semantic knowledge: Memory for knowledge of
the world, facts, meaning of words, etc. (e.g.,
knowing that the first month of the year is April
(alphabetically) but January (chronologically).

Observations in programming

 Attempting to make everything “configurable”
leads us to using just another programming
language for expressing configurable data and
rules!

 Ordinary programming languages are also seen
as “declarative”, at least by compilers.

Where does declarativeness help?

 Same configurable information (like
“Mycompany”) has to be used by different
programs/different languages

 several “main programs”

 administrator interfaces, database tools, ...

 We can derive new information (facts, rules)
from given facts/rules.

 additional limits/conditions not given explicitly

 convert imported data, important special cases, ...

 We can learn new information automatically

Transformation (in psychology)!

 declarative knowledge converted to procedural

 learning to drive a car, play tennis,

 “For example, when I was learning to play tennis, I learned all
about the rules of the game, where to come into contact with
the ball on my racket, how to make the ball go where I wanted
to by the follow through, and how to position my body for a
backhand stroke. This is a set of factual information. Putting
those facts into practice helped me gain the skills to transform a
series of declarative knowledge into procedural knowledge. The
skills I acquired couldn't be learned simply by being told. I
gained the skills only after actively putting them into practice
and being monitored by a coach who was constantly providing
feedback. “

Transformation (in programming)!

declarative knowledge converted to procedural

goal: automation and speed

 Rough understanding, notes and spec of the
solution written down as an actual program
code.

 Source code compiled into machine code.

Examples from robotics etc

 Robotics: planning vs reactive architectures

 Lenat´s Cyc vs Brooks's robotic insects

 Planning & reaction combo in DARPA races

 Roboswarm: combining declarative and
procedural knowledge

Viewing relational databases
as logic

Presentation plan

 refresher of 1st order predicate logic

 meaning of data in databases

 tables as predicates: straightforward encoding

 queries and joins as rules

 special objects and features: multiple rows, null

 encoding structures in db-s

 db keys as a way to encode functions

Pred calculus example 1: prolog

Data:

father(jan,pete).

father(jan,martin).

father(martin,matt).

father(frank,mary).

mother(mary,mike).

Rules:

grandfather(X,Z) :- father(X,Y), father(Y,Z).

grandfather(X,Z) :- father(X,Y), mother(Y,Z).

Queries:

? father(martin,mike)

? father(jan,X)

? grandfather(X,mike)

Pred calculus example 2

 brother(jim,pete)

 Forall X,Y (bother(X,Y) => brother(Y,X))

 Forall X,Y (brother(X,Y) => man(X)).

 query: man(X)

 answers: man(jim), man(pete)

Pred calculus with functions

Data:

father(pete)=jan.

father(martin)=jan.

father(matt)=martin.

father(mary)=frank.

mother(mike)=mary.

Rules:

grandfather(X,Z) <- father(Y)=X & father(Z)=Y

alternative: grandfather(father(father(X)),X).

grandfather(X,Z) <- father(Y)=X & mother(Z)=Y

alternative: grandfather(father(mother(X)),X).

Words in logic have no meaning

Data:

foo(p1)=j.

foo(m1)=j).

foo(m2)=m1.

foo(m3)=f.

bar(m4)=m3.

Rules:

grm(X,Z) <- foo(Y)=X & foo(Z)=Y

alternative: grm(foo(foo(X)),X).

grm(X,Z) <- foo(Y)=X & bar(Z)=Y

alternative: grm(foo(bar(X)),X).

Meaning of words?

• Relations give meaning to words

• What about = ?? father(john)=pete then just
replace .

• Three basic rules:

• e(X,X)

• e(X,Y) -> e(Y,X)

• e(X,Y) & e(Y,Z) -> e(X,Z)

• Examples: parallel lines, >=, relative

Meaning of words?

• Substitution rules of equality:

• e(X,Y) & father(X,Z) -> father(Y,Z)

• e(X,Y) & father(Z,X) -> father(Z,Y)

• e(X,Y) & e(father(X),Z) -> e(father(Y),Z)

• Etc for all predicates and functions we have

Built-in procedures and theories for
relations and functions

• Arithmetics + * etc: procedural attachments
(procedural data representation)

• String, list, date, file etc etc proc attachments

• Special built-in theories like Presburger arithm

• Solvers focusing on procedural attachments and
built-in theories are called SMT solvers: solvers
modulo theories

Relational db table and logic

Client table:

 id name balance

 1 john 100

 2 pete -200

Logic:

 client(1,john,100)

 client(2,pete,-200)

Queries

select

client.name, client.balance

from client

where balance<0;

client(I,N,B) & B<0 -> answer(N,B)

? answer(X,Y)

Join

 client table: cars table:

 id name balance id model owner

 1 john 100 1 ford 1

 2 pete -200 2 opel 2

 3 saab 2

 select client.name, cars.model from client, cars
where client.id=cars.owner

 client(I,N,B) & cars(J,M,I) -> ans(N,M)

Representing complex structures in
relational databases

+(*(1.9, 2.5),3)

Term:

 id op a1 t1 a2 t2

 1 * 2 D 1 D

 2 + 1 T 3 I

Data: varchar type

 1 “2.5” F

 2 “1.9” F

 3 “3” I

Special relational db gadgets

These things require extra care when encoding in
logic:

• null value

• keys

• multiple rows

• closed world

null values

• null values in two different locations are never
equal!

• client(1,jaan,null) and car(1,opel,null) then null
in client is not equal to null in car

• null represents an existentially quantified var:

• Exists X. client(1,jaan,X).

• Exists X. car(1,opel,X).

Keys

Client table:

 id name balance

 1 jan 100

 2 pete -200

ALTER TABLE client ADD PRIMARY KEY (id)

Would mean in logic:

Client.name(1)=jan

Client.name(2)=pete

Client.balance(1)=100

….

Multiple rows

payments table without a primary key

 client sum

 1 100

 1 100

 2 50

two identical facts in logic mean a single fact:

payments(1,100) …. payments(1,100)

Open versus closed world

• Classical logic is open:

• We know N facts. We do NOT say that only these N
facts hold: maybe there are M more facts which are
true but which we do not know.

• In databases we normally assume that world is
closed: only these facts hold which we know .
For example we assume that all the payments
performed are in our database. This allows us to
use aggregate functions like sum, avg, ...

Schemaless databases

and RDF

 The relational databases have been a standard way to store and
query data for decades

 Implementations are complex and polished

 SQL is everywhere

Alternatives to relational databases

 A varied landscape of technologies,
 part of which are under a NoSQL umbrella name:

• Network databases

• Graph databases

• Document databases

• Key-value databases

• Object-relational mapping

• Main memory databases

• XML databases

• RDF, Sparql, semantic web

• Google Bigtable and MapReduce framework

Triplets: an obvious idea to
Implement schemaless databases

 Each row with N cols is represented as N rows of three columns,
called sometimes as

• Row/Object id Column name Value

• Object Property Value

• Subject Predicate Object

Similar to key-value

Object Property Value

 can be combined to

 Object:Property Value

Schema-less is often inevitable

Read data from numerous sources, aggregate in our own database:

• We have no control over foreign data

• Our understanding of foreign data changes

• Our data sources change

There is one „schemaless“ standard,
but beware

 There is a wide range of schemaless databases, but most of them are
basically API-s or have proprietary query languages: no real
standards.

 However, there is one standard - RDF (resource description
framework) – which is not really loved.

• Developed and pushed by W3C

• Cornerstone of the semantic web project

• Large number of systems supporting

• A lot of tools

RDF: triple not really a triple

Object Property Value Valuetype

With valuetype normally being either:

• One of xml schema datatypes

• Global id: URI

• Local id

RDF: some restrictions

Object Property Value Valuetype

Object, Property, Valuetype: URI-s

Value: URI or literal value

Many representation syntaxes

• RDF/XML

• RDFa

• N3

• N-triples

• Turtle

•

Example in Turtle syntax

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ex: <http://example.org/stuff/1.0/> .

<http://www.w3.org/TR/rdf-syntax-grammar>

 dc:title "RDF/XML Syntax Specification (Revised)" ;

 ex:editor [

 ex:fullname "Dave Beckett";

 ex:homePage <http://purl.org/net/dajobe/>

] .

How to add metadata to a row?

Like timestamp, changer, row id, status etc etc?

Horrible answer: reification

The ugly head of reification

We have

personid:12 salary 20000

Want to add timestamp and entering person?

The reification way

From

personid:12 salary 2000 + timestamp etc

To

datarow:10001 subject personid:12
datarow:10001 predicate salary
datarow:10001 object 2000

datarow:10001 timestamp 2009-10-20 13:45
datarow:10001 modifier personid:345

From the relational db ...

One row, N cols in the relational db

First, get N rows of four cols in RDF

Second, get (N*3)+X rows of four cols after reification

N 12*N

Problem with containers

 RDF provides a container vocabulary consisting of three
predefined types (together with some associated predefined
properties).

 A container is a resource that contains things. The contained
things are called members. The members of a container may be
resources (including blank nodes) or literals. RDF defines three
types of containers:

 rdf:Bag

 rdf:Seq

 rdf:Alt

Problem with containers

Containers are a fake:

• Containers have no real semantics in RDF

• Container semantics would make calc hard.

Problem with local id-s

Different object id-s:

• Global URI-s.

– These are fine.

• Local “blank nodes”.

– Their semantics/use in the RDF spec is broken: creates
unnecessary problems.

Storage of RDF in a relational db

Predicate, subject, valuetype URI-s:

• keep a separate table for unique strings

• use numeric string id-s in pred,subject,valuetype

Storage of rdf in a relational db

Storing value? Can be int, float, string, URI, ...

Several ways, all bad:

• Encode everything as a string

• Encode everything as a number

• Use several columns for different (main) types

Sparql query language example

PREFIX type: <http://dbpedia.org/class/yago/>

PREFIX prop: <http://dbpedia.org/property/>

SELECT ?country_name ?population

WHERE {

 ?country a type:LandlockedCountries ;

 rdfs:label ?country_name ;

 prop:populationEstimate ?population .

 FILTER

 (?population > 15000000 &&

 langMatches(lang(?country_name), "EN")) .

} ORDER BY DESC(?population)

