
Chinese Remainder Theorem (CRT)
If n1, n2, . . . , nk are pairwise co-prime integers and if a1, a2, . . . , ak are any integers such that 0 ⩽
ai < ni for every i = 1, 2, . . . , k, then the system of congruence equations

x ≡ a1 (mod n1)

x ≡ a2 (mod n2) (1)
. . .

x ≡ ak (mod nk)

has a unqiue solution 0 ⩽ x < N , where N =
k∏

i=1
nk, such that x mod ni = ai for every i =

1, 2, . . . , k.

Theorem 1. The system of congruences (1) is solvable and the solution is unique.

Proof. Suppose that x and y are both solutions to (1). Then

∀i = 1, 2, . . . , k : x mod ni = y mod ni = ai =⇒ ni|x− y .

Since all ni are pairwise co-prime, their product N also divides x− y, and hence x ≡ y (mod N).
Considering that x and y are nonnegative and less than N , the statement N |x − y is true only if
x = y. Hence, the solution to the system eqrefeq:crt is unique.

Theorem 2. A mappping φ : Z/NZ → Z/n1Z× . . .× Z/nkZ defined by

φ : a mod N 7→ (a mod n1, . . . a mod nk)

is a ring-isomorphism.

Proof. First, we show that φ is bijective. Define an inverse mapping φ−1 = ψ as

ψ : Z/n1Z× . . .× Z/nkZ → Z/NZ

by
ψ : (a mod n1, . . . , a mod nk) 7→ a mod N .

Then for all (a mod n1, . . . , a mod nk) ∈ Z/n1Z× . . .× Z/nkZ and for all b mod N ∈ Z/NZ:

(φ ◦ ψ)(a mod n1, . . . , a mod nk) = φ(a mod N) = (a mod n1, . . . , a mod nk) ,

(ψ ◦ φ)(b) = ψ(b mod n1, . . . , b mod nk) = b mod N .

Hence, φ : Z/NZ → Z/n1Z× . . .× Z/nkZ is a bijection.
Next, we show that φ is an isomorphism (i.e., preserves operations). For all a mod N, b mod N ∈

Z/NZ it must hold that

φ(a+ b) = φ(a) + φ(b) ,

φ(a · b) = φ(a) · φ(b) .
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Observe that

φ(a mod N + b mod N) = φ(a+ b mod N) = (a+ b mod n1, . . . , a+ b mod nk)

= (a mod n1, . . . , a mod nk) + (b mod n1, . . . , b mod nk)

= φ(a mod N) + φ(b mod N) ,

φ(a mod N · b mod N) = φ(ab mod N) = (ab mod n1, . . . , ab mod nk)

= (a mod n1, . . . a mod nk) · (b mod n1, . . . , b mod nk)

= φ(a mod N) · φ(b mod N) .

Hence, φ : Z/NZ → Z/n1Z× . . .× Z/nkZ is a ring-isomorphism, and therefore

Z/NZ ∼= Z/n1Z× . . .× Z/nkZ .

Corollary 1. Z/pqZ ∼= Z/pZ×Z/qZ. In other words, computing in Zpq is the same as computing
in Zp × Zq.

Theorem 3. Let n1, n2 be co-prime integers and let a1, a2 be any integers such that a1 < n1 and
0 ⩽ a2 < n2. Then the solution to the system of congruence equations

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

is
x ≡ a1m2n2 + a2m1n1 ,

where m1 and m2 are the coefficients of the Bézout identity m1n1 +m2n2 = 1 = gcd(n1, n2).

Proof. Indeed, considering that by the Bézout identity m2n2 = 1−m1n1,

x = a1m2n2 + a2m1n1 = a1(1−m1n1) + a2m1n1

= a1 + (a2 − a1)m1n1 =⇒ x ≡ a1 (mod n1) .

Similarly, by the Bézout identity, m1n1 = 1−m2n2, and hence

x = a1m2n2 + a2m1n1 = a1m2n2 + a2(1−m2n2)

= a2 + (a1 − a2)m2n2 =⇒ x ≡ a2 (mod n2) .

Theorem 4. Let n1, n2, . . . , nk be pairwise co-prime integers and let a1, a2, . . . , ak be any integers
such that 0 ⩽ ai < ni for all i = 1, 2, . . . , k, and let N = n1 · n2 · nk. Then the solution of the
system of congruence equations

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

. . .

x ≡ ak (mod nk)
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is

x ≡
k∑

i=1

aiMiNi (mod N) ,

where Ni =
N
ni

and Mi is the Bézout coefficient satisfying MiNi +mini = 1 = gcd(Ni, ni).

Proof. As Nj is a multiple of ni for i ̸= j, it holds that

x =

k∑
i=1

aiMiNi = a1M1N1︸ ︷︷ ︸
≡0 (mod ni)

+ . . .+ aiMiNi + . . .+ akMkNk︸ ︷︷ ︸
≡0 (mod n)i

≡ aiMiNi (mod ni) .

Since gcd(Ni, ni) = 1, the Bézout identity MiNi +mini = 1 applies, and hence MiNi = 1−mini.
And so

x ≡ aiMiNi (mod ni) ≡ ai(1−mini) (mod ni) ≡ ai (mod ni) .
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