Chinese Remainder Theorem (CRT)

If n_1, n_2, \ldots, n_k are pairwise co-prime integers and if a_1, a_2, \ldots, a_k are any integers such that $0 \leq a_i < n_i$ for every $i = 1, 2, \ldots, k$, then the system of congruence equations

$$x \equiv a_1 \pmod{n_1}$$

$$x \equiv a_2 \pmod{n_2}$$

$$\dots$$

$$x \equiv a_k \pmod{n_k}$$
(1)

has a unque solution $0 \leq x < N$, where $N = \prod_{i=1}^{k} n_k$, such that $x \mod n_i = a_i$ for every $i = 1, 2, \ldots, k$.

Theorem 1. The system of congruences (1) is solvable and the solution is unique.

Proof. Suppose that x and y are both solutions to (1). Then

$$\forall i = 1, 2, \dots, k : x \mod n_i = y \mod n_i = a_i \implies n_i | x - y$$
.

Since all n_i are pairwise co-prime, their product N also divides x - y, and hence $x \equiv y \pmod{N}$. Considering that x and y are nonnegative and less than N, the statement N|x - y is true only if x = y. Hence, the solution to the system eqrefeq:crt is unique.

Theorem 2. A mapping $\varphi : \mathbb{Z}/N\mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \ldots \times \mathbb{Z}/n_k\mathbb{Z}$ defined by

 $\varphi: a \mod N \mapsto (a \mod n_1, \dots a \mod n_k)$

is a ring-isomorphism.

Proof. First, we show that φ is bijective. Define an inverse mapping $\varphi^{-1} = \psi$ as

$$\psi: \mathbb{Z}/n_1\mathbb{Z} \times \ldots \times \mathbb{Z}/n_k\mathbb{Z} \to \mathbb{Z}/N\mathbb{Z}$$

by

$$\psi : (a \mod n_1, \dots, a \mod n_k) \mapsto a \mod N$$

Then for all $(a \mod n_1, \ldots, a \mod n_k) \in \mathbb{Z}/n_1\mathbb{Z} \times \ldots \times \mathbb{Z}/n_k\mathbb{Z}$ and for all $b \mod N \in \mathbb{Z}/N\mathbb{Z}$:

$$(\varphi \circ \psi)(a \mod n_1, \dots, a \mod n_k) = \varphi(a \mod N) = (a \mod n_1, \dots, a \mod n_k)$$

$$(\psi \circ \varphi)(b) = \psi(b \mod n_1, \dots, b \mod n_k) = b \mod N .$$

Hence, $\varphi : \mathbb{Z}/N\mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \ldots \times \mathbb{Z}/n_k\mathbb{Z}$ is a bijection.

Next, we show that φ is an isomorphism (i.e., preserves operations). For all $a \mod N, b \mod N \in \mathbb{Z}/N\mathbb{Z}$ it must hold that

$$arphi(a+b) = arphi(a) + arphi(b) \ , \ arphi(a\cdot b) = arphi(a) \cdot arphi(b) \ .$$

Observe that

$$\varphi(a \mod N + b \mod N) = \varphi(a + b \mod N) = (a + b \mod n_1, \dots, a + b \mod n_k)$$

= $(a \mod n_1, \dots, a \mod n_k) + (b \mod n_1, \dots, b \mod n_k)$
= $\varphi(a \mod N) + \varphi(b \mod N)$,
 $\varphi(a \mod N \cdot b \mod N) = \varphi(ab \mod N) = (ab \mod n_1, \dots, ab \mod n_k)$
= $(a \mod n_1, \dots, a \mod n_k) \cdot (b \mod n_1, \dots, b \mod n_k)$
= $\varphi(a \mod N) \cdot \varphi(b \mod N)$.

Hence, $\varphi : \mathbb{Z}/N\mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \ldots \times \mathbb{Z}/n_k\mathbb{Z}$ is a ring-isomorphism, and therefore

$$\mathbb{Z}/N\mathbb{Z}\cong\mathbb{Z}/n_1\mathbb{Z}\times\ldots\times\mathbb{Z}/n_k\mathbb{Z}$$
.

Corollary 1. $\mathbb{Z}/pq\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$. In other words, computing in \mathbb{Z}_{pq} is the same as computing in $\mathbb{Z}_p \times \mathbb{Z}_q$.

Theorem 3. Let n_1, n_2 be co-prime integers and let a_1, a_2 be any integers such that $a_1 < n_1$ and $0 \le a_2 < n_2$. Then the solution to the system of congruence equations

$$x \equiv a_1 \pmod{n_1}$$
$$x \equiv a_2 \pmod{n_2}$$

is

$$x \equiv a_1 m_2 n_2 + a_2 m_1 n_1 \;\;,$$

where m_1 and m_2 are the coefficients of the Bézout identity $m_1n_1 + m_2n_2 = 1 = \gcd(n_1, n_2)$.

Proof. Indeed, considering that by the Bézout identity $m_2n_2 = 1 - m_1n_1$,

$$x = a_1 m_2 n_2 + a_2 m_1 n_1 = a_1 (1 - m_1 n_1) + a_2 m_1 n_1$$

= $a_1 + (a_2 - a_1) m_1 n_1 \implies x \equiv a_1 \pmod{n_1}$.

Similarly, by the Bézout identity, $m_1n_1 = 1 - m_2n_2$, and hence

$$x = a_1 m_2 n_2 + a_2 m_1 n_1 = a_1 m_2 n_2 + a_2 (1 - m_2 n_2)$$

= $a_2 + (a_1 - a_2) m_2 n_2 \implies x \equiv a_2 \pmod{n_2}$.

	-

Theorem 4. Let n_1, n_2, \ldots, n_k be pairwise co-prime integers and let a_1, a_2, \ldots, a_k be any integers such that $0 \leq a_i < n_i$ for all $i = 1, 2, \ldots, k$, and let $N = n_1 \cdot n_2 \cdot n_k$. Then the solution of the system of congruence equations

$$x \equiv a_1 \pmod{n_1}$$
$$x \equiv a_2 \pmod{n_2}$$
$$\dots$$
$$x \equiv a_k \pmod{n_k}$$

is

$$x \equiv \sum_{i=1}^{k} a_i M_i N_i \pmod{N} ,$$

where $N_i = \frac{N}{n_i}$ and M_i is the Bézout coefficient satisfying $M_i N_i + m_i n_i = 1 = \text{gcd}(N_i, n_i)$. *Proof.* As N_j is a multiple of n_i for $i \neq j$, it holds that

$$x = \sum_{i=1}^{k} a_i M_i N_i = \underbrace{a_1 M_1 N_1}_{\equiv 0 \pmod{n_i}} + \ldots + a_i M_i N_i + \ldots + \underbrace{a_k M_k N_k}_{\equiv 0 \pmod{n_i}}$$
$$\equiv a_i M_i N_i \pmod{n_i} .$$

Since $gcd(N_i, n_i) = 1$, the Bézout identity $M_iN_i + m_in_i = 1$ applies, and hence $M_iN_i = 1 - m_in_i$. And so

$$x \equiv a_i M_i N_i \pmod{n_i} \equiv a_i (1 - m_i n_i) \pmod{n_i} \equiv a_i \pmod{n_i}$$
.