ITC8190
 Mathematics for Computer Science
 Recap and Preparation for the Test

Aleksandr Lenin

October 16th, 2018

Set Theory

Show that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.

$$
\begin{aligned}
(A \cap B)^{\prime} & =\{x: x \notin A \cap B\} \\
& =\{x: \neg(x \in A \wedge x \in B)\} \\
& =\{x: x \notin A \vee x \notin B\} \\
& =\left\{x: x \in A^{\prime} \vee x \in B^{\prime}\right\} \\
& =A^{\prime} \cup B^{\prime}
\end{aligned}
$$

Set Theory

Show that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.

$$
\begin{aligned}
x \in(A \cap B)^{\prime} & \Longrightarrow x \notin A \cap B \\
& \Longrightarrow x \notin A \vee x \notin B \\
& \Longrightarrow x \in A^{\prime} \vee x \in B^{\prime} \\
& \Longrightarrow x \in A^{\prime} \cup B^{\prime} \\
& =(A \cap B)^{\prime} \subseteq A^{\prime} \cup B^{\prime} \\
x \in A^{\prime} \cup B^{\prime} & \Longrightarrow x \notin A \vee x \notin B \\
& \Longrightarrow x \notin A \cap B \\
& \Longrightarrow x \in(A \cap B)^{\prime} \\
& \Longrightarrow A^{\prime} \cup B^{\prime} \subseteq(A \cap B)^{\prime}
\end{aligned}
$$

Therefore, $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.

Partitions and Factor Spaces

A partition P of a set X is the set $P=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ such that

$$
\begin{aligned}
& X_{i} \cap X_{j}=\emptyset \text { for } i \neq j \\
& \bigcup_{i} X_{i}=X .
\end{aligned}
$$

Factor space is an image of a set under an equivalence relation, together with some binary operation on the set of equivalence classes.

$$
\begin{aligned}
& \mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z} \\
& \mathbb{Z}_{n}=\mathbb{Z} / \equiv \\
& a \equiv b \Longleftrightarrow n \mid(a-b) .
\end{aligned}
$$

Factor space \mathbb{Z}_{n} is a collection of equivalence classes

$$
\mathbb{Z}_{n}=\{[0],[1],[2], \ldots,[n-1]\} .
$$

Partitions and Factor Spaces

In example, the subsets $X_{1}=\{0,3\}, X_{2}=\{1,4\}$, $X_{3}=\{2,5\}$ form a partition on $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$. It can be seen that

$$
\begin{aligned}
& X_{1} \cup X_{2} \cup X_{3}=\mathbb{Z}_{6}, \\
& X_{1} \cap X_{2}=\emptyset \\
& X_{2} \cap X_{3}=\emptyset \\
& X_{1} \cap X_{3}=\emptyset .
\end{aligned}
$$

Partitions and Factor Spaces

$$
\begin{aligned}
\mathbb{Z}_{3} & =\{[0],[1],[2]\}=\{0,1,2\} \\
{[0] } & =\{\ldots,-6,-4,-2,0,2,4,6, \ldots\} \\
{[1] } & =\{\ldots,-5,-3,-1,1,3,5,7, \ldots\} \\
{[2] } & =\{\ldots,-6,-2,0,2,4,6,8, \ldots\}
\end{aligned}
$$

It can be seen that $[0] \cap[1]=[0] \cap[2]=[1] \cap[2]=\emptyset$ and $[0] \cup[1] \cup[2]=\mathbb{Z}$. Therefore, \mathbb{Z}_{3} partitions \mathbb{Z} into 3 equivalence classes [0], [1], [2]. Similarly,
$\mathbb{Z}_{4}=\{0,1,2,3\}, \mathbb{Z}_{5}=\{0,1,2,3,4\}, \mathbb{Z}_{6}=\{0,1,2,3,4,5\}$.

Cartesian Products

$$
\begin{aligned}
& \mathbb{Z}_{2}^{3}=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(0,0,0),(0,0,1),(0,1,0),(0,1,1) \\
& \quad(1,0,0),(1,0,1),(1,1,0),(1,1,1)\} \\
& \mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(0,0),(0,1),(1,0),(1,1)\} \\
& \mathbb{Z}_{2} \times \mathbb{Z}_{3}=\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)\} \\
& \mathbb{Z}_{3} \times \mathbb{Z}_{2}=\{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)\}
\end{aligned}
$$

Cartesian Products

$$
\begin{aligned}
\mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2}=\{ & (0,0,0),(0,0,1),(0,1,0),(0,1,1) \\
& (0,2,0),(0,2,1),(1,0,0),(1,0,1) \\
& (1,1,0),(1,1,1),(1,2,0),(1,2,1)\}
\end{aligned}
$$

$$
\mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(0,0,0),(0,0,1),(0,1,0),(0,1,1)
$$

$$
(1,0,0),(1,0,1),(1,1,0),(1,1,1)
$$

$$
(2,0,0),(2,0,1),(2,1,0),(2,1,1)\}
$$

Binary Relations

Show that function $\phi: \mathbb{Z} \rightarrow 2 \mathbb{Z}$ is injective.

$$
2 n=2 m \Longrightarrow n=m
$$

Show that function $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\phi: n \mapsto n^{2}$ is not injective. It can be seen that $a^{2}=(-a)^{2}$, but $a \neq-a$.

$$
a^{2}=b^{2} \nRightarrow a=b .
$$

Show that function $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\phi: x \mapsto x+10$ is surjective. It can be seen that for every integer $z \in \mathbb{Z}$ there exists its unique preimage $z^{\prime}=z-10 \in \mathbb{Z}$, such that $z-10+10=z$.

$$
\forall z \in \mathbb{Z} \exists z^{\prime}=z-10: z=\phi\left(z^{\prime}\right)
$$

Bijections

Let $A=\{1,2,3\}$ and $B=\{a, b, c\}$. Define a mapping $\phi: A \rightarrow B$ by

$$
\phi: 1 \mapsto a, \quad 2 \mapsto b, \quad 3 \mapsto c .
$$

The mapping $\phi: A \rightarrow B$ is a bijection iff it is invertible. Define an inverse mapping $\psi: B \rightarrow A$ by

$$
\psi: a \mapsto 1, \quad b \mapsto 2, \quad c \mapsto 3 .
$$

Bijections

It must hold that

$$
\begin{aligned}
& (\psi \circ \phi)(a)=a \\
& (\phi \circ \psi)(b)=b
\end{aligned}
$$

The compositions are:

$$
\psi \circ \phi: A \rightarrow A=i d_{A}, \phi \circ \psi: B \rightarrow B=i d_{B}
$$

It can be seen that

$$
\begin{array}{ll}
(\psi \circ \phi)(1)=\psi(a)=1 & (\phi \circ \psi)(a)=\phi(1)=a \\
(\psi \circ \phi)(2)=\psi(b)=2 & (\phi \circ \psi)(b)=\phi(2)=b \\
(\psi \circ \phi)(3)=\psi(c)=3 & (\phi \circ \psi)(c)=\phi(3)=c
\end{array}
$$

Bijections

Consider a mapping $\phi: \mathbb{Z} \rightarrow 3 \mathbb{Z}$ given by $\phi: n \mapsto 3 n$. To show that $\phi: \mathbb{Z} \rightarrow 3 \mathbb{Z}$ is a bijection, consider an inverse mapping $\psi: 3 \mathbb{Z} \rightarrow \mathbb{Z}$ by $\psi: n \mapsto \frac{n}{3}$. Then

$$
\begin{aligned}
& (\phi \circ \psi)(a)=\phi\left(\frac{a}{3}\right)=3 \cdot \frac{a}{3}=a \\
& (\psi \circ \phi)(a)=\psi(3 a)=3 a \cdot \frac{1}{3}=a .
\end{aligned}
$$

Therefore, $\phi: \mathbb{Z} \rightarrow 3 \mathbb{Z}$ is a bijection.

Bijections

Consider a mapping $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\phi: x \mapsto x+15$. To show that $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ is a bijection, define an inverse mapping $\psi: \mathbb{Z} \rightarrow \mathbb{Z}$ by $\psi: x \mapsto x-15$. Then

$$
\begin{aligned}
& (\phi \circ \psi)(a)=\phi(a-15)=a-15+15=a, \\
& (\psi \circ \phi)(a)=\psi(a+15)=a+15-15=a .
\end{aligned}
$$

Therefore, $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ is a bijection.

Composition of Mappings

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f: n \mapsto n+5$, and $g: \mathbb{Z} \rightarrow 2 \mathbb{Z}$ be defined by $g: n \mapsto 2 n$. Then

$$
\begin{aligned}
& (f \circ g)(x)=f(2 x)=2 x+5, \\
& (g \circ f)(x)=g(x+5)=2(x+5)=2 x+10 .
\end{aligned}
$$

The inverse mappings $f^{-1}: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f: n \mapsto n-5$ and $g^{-1}: 2 \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $g: n \rightarrow \frac{n}{2}$.

$$
\begin{aligned}
& \left((f \circ g)^{-1}\right)(x)=\left(g^{-1} \circ f^{-1}\right)(x)=g^{-1}(x-5)=\frac{x-5}{2}, \\
& \left((f \circ g) \circ\left(g^{-1} \circ f^{-1}\right)\right)(x)=\frac{(2 x+5)-5}{2}=\frac{2 x}{2}=x .
\end{aligned}
$$

Equivalence Relation

Show that group isomorphism \cong is an equivalence relation on the class of groups. Groups (G, \odot) and (H, \circ) are said to be isomorphic (written $G \cong H$) iff there exists a bijection $\phi: G \rightarrow H$ that preserves group operations.

$$
\forall a, b \in G: \phi(a \odot b)=\phi(a) \circ \phi(b) .
$$

Reflexivity: $G \cong G$
Symmetry: $G \cong H \Longrightarrow H \cong G$
Transitivity: $G \cong H \cong K \Longrightarrow G \cong K$

Partial order relation

Show that | is a partial order relation on the set A. Let $a, b, c \in A$.

Reflexivity: $a \mid a$
Anti-symmetry: $a|b \wedge b| a \Longrightarrow a=b$
Transitivity: $a|b \wedge b| c \Longrightarrow a \mid c$
Show that $<$ is a strict partial order relation on the set A.
Anti-reflexivity: $a \nless a$
Asymmetry: $a<b \Longrightarrow \neg(b<a)$
Transitivity: $a<b<c \Longrightarrow a<c$

THANK YOU FOR
 YOUR ATTENTION ANY QUESTIONS?

