Definition 1 (Left Coset). Let G be a group and H be a subgroup of G. Left coset of H with representative $g \in G$ is the set

$$
g H=\{g h: h \in H\}
$$

Definition 2 (Right Coset). Let G be a group and H be a subgroup of G. Right coset of H with representative $g \in G$ is the set

$$
H g=\{h g: h \in H\}
$$

Example 1 (Cosets). Let H be the subgroup of \mathbb{Z}_{6} consisting of the elements $\{0,3\}$. The cosets are

$$
\begin{aligned}
& 0+H=3+H=\{0,3\} \\
& 1+H=4+H=\{1,4\} \\
& 2+H=5+H=\{2,5\}
\end{aligned}
$$

Definition 3 (Index of a subgroup). Let G be a group and H be a subgroup of G. The index [$G: H$] of H in G is the number of left cosets of H in G.

Example 2 (Index of a subgroup). Let $G=\mathbb{Z}_{6}$ and $H=\{0,3\}$. Then $[G: H]=3$.
Theorem 1. Let H be a subgroup of a group G. Then the left (same as right) cosets of H in G partition G. That is, the group G is the disjoint union of the left (same as right) cosets of H in G.

Proof. Let $g_{1} H$ and $g_{2} H$ be two cosets of H in G. We must show that either $g_{1} H \cap g_{2} H=\emptyset$ or $g_{1} H=g_{2} H$. Suppose that $g_{1} H \cap g_{2} H \neq \emptyset$ and $a \in g_{1} H \cap g_{2} H$. Then by definition of a left coset, $a=g_{1} h_{1}=g_{2} h_{2}$ for some elements $h_{1}, h_{2} \in H$.

Let $x \in g_{1} H$. Then there exists $h_{k} \in H$ such that $x=g_{1} h_{k}$. Then

$$
x=g_{1} h_{k}=g_{1} h_{1} h_{1}^{-1} h_{k}=g_{2} h_{2} h_{1}^{-1} h_{k} \in g_{2} H
$$

and therefore $g_{1} H \subseteq g_{2} H$.
Let $y \in g_{2} H$. Then there exists $h_{m} \in H$ such that $x=g_{2} h_{m}$. Then

$$
x=g_{2} h_{m}=g_{2} h_{2} h_{2}^{-1} h_{m}=g_{1} h_{1} h_{2}^{-1} h_{m} \in g_{1} H
$$

and therefore $g_{2} H \subseteq g_{1} H$. Therefore, $g_{1} H=g_{2} H$.
Theorem 2. Let H be a subgroup of G with $g \in G$. The number of elements in H is the same as the number of elements in $g H$.

Proof. Let $\phi: H \rightarrow g H$ be defined by $h \mapsto g h$. Define an inverse mapping $\psi: g H \rightarrow H$ by $a \mapsto g^{-1} a$. First we show that ψ is well defined. Since $a \in g H$, then $a=g h$ for some $h \in H$. $g^{-1} a=g^{-1} g h=h \in H$. We show that ϕ is a bijection.

$$
\begin{aligned}
& (\phi \circ \psi)(a)=\phi\left(g^{-1} a\right)=g g^{-1} a=a \\
& (\psi \circ \phi)(h)=\psi(g H)=g^{-1} g h=h
\end{aligned}
$$

Therefore, ϕ is a bijection between H and $g H$. Hence, the number of elements in H is the same as the number of elements in $g H$.

Theorem 3 (Lagrange). Let G be a finite group and let H be a subgroup of G. Then $|G| /|H|=$ [$G: H$] is the number of distinct left cosets of H in G. In particular, the number of elements in H must divide the number of elements in G.

Proof. Every subgroup $H \subseteq G$ partitions G into $[G: H]$ distinct left cosets. Each left coset has $|H|$ elements, therefore, $|G|=[G: H]|H|$.

Theorem 4. Every Carmichael number n is odd.
Proof. Let n be a Carmichael number. Since n is composite, we conclude $n \geqslant 4$. Since $n-1$ is relatively prime to $n,(n-1)^{n-1} \equiv 1(\bmod n)$, so $(-1)^{n-1} \equiv 1(\bmod n)$, and we know $(-1)^{n-1}=$ ± 1. Since $n>2$, it holds that $-1 \not \equiv 1(\bmod n)$, so $(-1)^{n-1}=1$. Thus $n-1$ is even, which implies n is odd.

