ITC8190
 Mathematics for Computer Science Equivalence Relations on Sets

Aleksandr Lenin

October 2nd, 2018

Relation R on a set A is called an equivalence relation iff R is reflexive, symmetric, and transitive.

Let us verify if $=$ is an equivalence relation on \mathbb{N}.
Reflexivity: any element a is equal to itself $(a=a)$.
Symmetry: if $a=b$ then also $b=a$.
Transitivity: if $a=b$ and $b=c$, then also $a=c$.
Hence, $=$ is an equivalence relation on \mathbb{N}.

$$
R \subseteq \mathbb{N} \times \mathbb{N}=\{(0,0),(1,1),(2,2), \ldots\}
$$

Suppose that f and g are differentiable functions on \mathbb{R}. Let \sim be an equivalence relation defined by

$$
f(x) \sim g(x) \Longleftrightarrow \frac{\partial f}{\partial x}=\frac{\partial g}{\partial x} .
$$

It is clear that \sim is reflexive and symmetric.
To show transitivity, suppose $f(x) \sim g(x)$ and $g(x) \sim h(x)$. The condition $\frac{\partial f}{\partial x}=\frac{\partial g}{\partial x}$ is satisfied if $f(x)$ and $g(x)$ differ by a constant.

$$
\begin{aligned}
& f(x)-g(x)=c_{1}, \\
& g(x)-h(x)=c_{2}, \\
& f(x)-h(x)=f(x)-g(x)+g(x)-h(x)=c_{1}+c_{2} .
\end{aligned}
$$

This implies $f(x) \sim h(x)$.

An equivalence relation gives rise to a partition via equivalence classes.

Picture will be drawn on the whiteboard.

Such a partition is called a factor space, and the following notation is used X / \sim, where X is the underlying set, and \sim is the equivalence relation.

A set with an equivalence relation on it is called a setoid.
A partition P on a set X is a collection of non-empty subsets X_{1}, X_{2}, \ldots such that are all disjoint, meaning that $X_{i} \cap X_{j}=\emptyset$ for $i \neq j$, and $\bigcup_{k} X_{k}=X$.

Let \sim be an equivalence relation on a set X and let $x \in X$. Then the equivalence class $[x] \in X / \sim$ is

$$
[x]=\{y \in X: y \sim x\}
$$

Lemma 1

Given an equivalence relation \sim on a set X, there exists at least one non-empty equivalence class.

Proof.
Suppose there exists an equivalence relation \sim on X, and let $x \in X$. By reflexivity of $\sim, x \sim x$, and so $x \in[x]$. Hence, the equivalence class $[x]$ is non-empty.

Theorem 1
Given an equivalence relation \sim on a set X, the equivalence classes of X form a partition of X.

Proof.
Suppose there exists an equivalence relation \sim on X. We need to show that \sim forms a partition of X. By Lemma 1 , $\cup[x]=X$. Let $x, y \in X$. We will show that either $x \in X$
$[x] \cap[y]=\emptyset$ or $[x]=[y]$. Suppose $[x] \cap[y]$ is non-empty.
$z=[x] \cap[y] \neq \emptyset \Longrightarrow z \sim x \wedge z \sim y \Longrightarrow x \sim y \Longrightarrow[x] \subseteq[y]$.
Similarly, $y \sim x \Longrightarrow[y] \subseteq[x]$, and so $[x]=[y]$. Therefore, two equivalence classes are disjoint or exactly the same. \square

Theorem 2
If $P=\left\{X_{i}\right\}$ is a partition of a set X_{i}, then there is an equivalence relation on X with equivalence classes X_{i}.

Proof.

Let $P=\left\{X_{i}\right\}$ be a partition of a set X. Let $a \sim b \Longleftrightarrow a \in X_{i} \wedge b \in X_{i}$. Clearly, \sim is reflexive. To show symmetry, observe that

$$
x \sim y \Longrightarrow x \in X_{i} \wedge y \in X_{i} \Longrightarrow y \sim x .
$$

For transitivity, observe that

$$
x \sim y \wedge y \sim z \Longrightarrow x \in X_{i} \wedge y \in X_{i} \wedge z \in X_{i} \Longrightarrow x \sim z
$$

Clearly, \sim is an equivalence relation on X.

Corollary 1

Any two equivalence classes are either disjoint or equal.
Corollary 2
Every equivalence relation on a set corresponds to a partition of this set.

Corollary 3
Any partition of a set corresponds to an equivalence relation which gives rise to this partition.

In example,

$$
\mathbb{Z} / \sim: a \sim b \Longleftrightarrow a \equiv b \quad(\bmod 2)
$$

contains two equivalence classes [0] and [1] - even and odd numbers.

$$
\begin{aligned}
& {[0]=\{\ldots,-4,-2,0,2,4, \ldots\}} \\
& {[1]=\{\ldots,-3,-1,1,3,5, \ldots\}}
\end{aligned}
$$

It can be seen that $[0] \cap[1]=\emptyset$ and $[0] \cup[1]=\mathbb{Z}$.
Equivalence classes in $\mathbb{Z} / \sim: a \sim b \Longleftrightarrow a \equiv b(\bmod 3)$:

$$
\begin{aligned}
& {[0]=\{\ldots,-3,0,3,6, \ldots\}} \\
& {[1]=\{\ldots,-2,1,4,7, \ldots\}} \\
& {[2]=\{\ldots,-1,2,5,8, \ldots\}}
\end{aligned}
$$

form another partition of \mathbb{Z}, since $[0] \cap[1] \cap[2]=\emptyset$ and $[0] \cup[1] \cup[2]=\mathbb{Z}$.

The set of integers \mathbb{Z} is an image of $\mathbb{N} \times \mathbb{N}$, under \sim.

$$
\mathbb{Z}=\mathbb{N} \times \mathbb{N} / \sim, \quad(a, b) \sim(c, d) \Longleftrightarrow a-b=c-d
$$

The set of rational numbers is an image of the set $\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$ under \sim.

$$
\mathbb{Q}=\mathbb{Z} \times(\mathbb{Z} \backslash\{0\}) / \sim, \quad(a, b) \sim(c, d) \Longleftrightarrow a c=b d
$$

The set \mathbb{Z}_{n} is an image of \mathbb{Z} under congruence relation.
$\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}=\mathbb{Z} / \sim: a \sim b \Longleftrightarrow a \equiv b \quad(\bmod n)$ $\Longleftrightarrow n \mid(a-b)$.

THANK YOU FOR
 YOUR ATTENTION ANY QUESTIONS?

