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Two integers a and b are said to be congruent modulo n
if n divides their difference. In other words, n|a − b.

Since congruence is an equivalence relation on the set of
integers, any two congruent integers fall in the same
equivalence class.

a ≡ b (mod n) ⇐⇒ n|a − b ⇐⇒ ∃k ∈ Z : a = b + kn .

I.e.,

−1 ≡ 2 (mod 3) , 7 ≡ 1 (mod 3) , 2 ≡ 12 (mod 5) .



We can define addition ⊕ and multiplication ⊗ in number
domain Zm by

a ⊕ b = (a + b) mod m ,

a ⊗ b = (a · b) mod m .

I.e., in Z3, it holds that

2 ⊕ 2 = 2 ⊗ 2 = 1 , 1 ⊕ 2 = 0 ,

and in Z5:

2 ⊕ 3 = 0 , 3 ⊕ 3 = 3 ⊗ 2 = 1 , 3 ⊗ 4 = 2 .



modm may be viewed as a function mod m : Z → Zm .
with the following properties:

• modm is idemponent: (a mod m) mod m = a mod m.
(a mod m) mod m = (a + αm) mod m

= (a + αm) + βm = a + (α + β)m
= a mod m .

• modm preserves operations (i.e. is a ring
homomorphism):

a mod m + b mod m = a + αm + b + βm
= a + b + (α + β)m
= (a + b) mod m ,

a mod m · b mod m = (a + αm)(b + βm)

= ab + (aβ + αb + αβm)︸ ︷︷ ︸
∈Z

m

= (a · b) mod m .



Conclusion 1
When computing

a + (b · (c + (d · (e + f)) . . .))

we can reduce modm whenever we like, the result will not
change.

Conclusion 2
Operations ⊕ and ⊗ are somewhat similar to usual addition
+ and multiplication × in Z.

Despite ⊕ and ⊗ differ from + and ×, we will use the usual
notation + and × whenever appropriate, if it will not cause
confusion.



The following properties hold in Zm:
• Associativity: a + (b + c) = (a + b) + c, as well as

a · (b · c) = (a · b) · c
• Commutativity: a + b = b + a, and a · b = b · a
• Distributivity: (a + b) · c = (a · c) + (b · c)
• Zero: a + 0 = 0 + a (0 is the additive identity)
• Unit: a · 1 = 1 · a (1 is the multiplicative identity)
• Additive inverse −a of element a ∈ Zm is m − a ∈ Zm,

because

a + (−a) = a + m − a = m ≡ 0 (mod m) .



The following properties hold in Zm:
• Zero divisors: the product of two non-zero elements

can be zero. I.e.,

2 · 3 ≡ 0 (mod 6) , 3 · 4 ≡ 0 (mod 6) .

• The sum of two positive elements can be zero. I.e.,

2 + 3 ≡ 0 (mod 5) , 5 + 7 ≡ 0 (mod 12) .

• Not every element a has a multiplicative inverse
a−1 ∈ Zm such that a · a−1 = 1. I.e., 2−1 = 3 in Z5,
since

2 · 3 = 6 ≡ 1 (mod 5) ,

but 2 is not invertible in Z6.



Since some elements are not invertible in Zn, some
congruence equations with non-invertible coefficients are
not solvable. I.e.,

2 · x ≡ 5 (mod 7)

is solvable, and the solution is x = 6 because

2 · 6 = 12 ≡ 5 (mod 7) ,

but, the equation

2 · x ≡ 5 (mod 6)

is not solvable.



Which elements are invertible in Zm?
Theorem 1
An element a ∈ Zm is invertible iff gcd(a,m) = 1.

Proof.
Let a ∈ Zm be such that gcd(a,m) = 1. Then, by the
Bézout identity, there exist integers α and β such that

1 = gcd(a, b) = αa + βm ≡ αa (mod m) ,

which means that a−1 ≡ α (mod m).

Let a be an invertible element of Zm. Then there exists
a−1 ∈ Zm such that a · a−1 ≡ 1 (mod m). Then
a · a−1 + βm = 1 for some β ∈ Z, and by the Bézout
identity, it means that gcd(a,m) = 1.



Theorem 2
Zero divisers are not invertible in Zm.

Proof.
Let a ∈ Zm, a ̸= 0 be a zero divisor, i.e. there exists
b ∈ Zm, b ̸= 0 such that ab ≡ 0 (mod m). Assume a is
invertible, i.e. there exists a−1 ∈ Zm such that a · a−1 ≡ 1
(mod m). Then

ab ≡ 0 (mod m) =⇒ a−1ab ≡ a−1 · 0 (mod m)

=⇒ b ≡ 0 (mod m) ,

a contradiction.



Theorem 3
The equation ax mod n = c with a, c ∈ Zn is solvable iff
gcd(a, n)|c.

Proof.
If the equation is solvable and gcd(a, n) = d, then there
exist integers α, β ∈ Z such that a = αd and n = βd, and
hence d|c, because

c = ax mod n = ax + kn = αdx + βdk = (αx + βk)d ,

If d = gcd(a, n) and d|c, then gcd
(a

d ,
n
d
)
= 1, and hence a

d is
invertible modulo n

d , and the equation a
dx mod n

d = c
d is

solvable, i.e. ∃k ∈ Z :

a
dx + kn

d =
c
d =⇒ ax + kn = c =⇒ ax = c (mod n) .



How many invertible elements are there in Zn?

The Euler’s phi function (a.k.a. Euler’s totient
function) for any given n > 0 returns the number of
integers in the range 0, . . . , n − 1 that are co-prime to n.
Let n = pe1

1 · pe2
2 · · · pek

k . Then

φ(n) = n ·
∏
p|n

(
1 − 1

p

)
.

This formula works in all cases. However, if n is some
prime p, then the formula takes its simplified form

φ(p) = p − 1 .

If n = n1 · n2, such that gcd(n1, n2) = 1, then

φ(n1 · n2) = ϕ(n1) · ϕ(n2) .



φ(36) = ϕ(22 · 32) = 36 ·
(

1 − 1
2

)
·
(

1 − 1
3

)
= 36 · 1

2 · 2
3 = 12 ,

φ(6) = ϕ(2 · 3) = ϕ(2) · ϕ(3) = (2 − 1)(3 − 1) = 2 ,

φ(12) = φ(22 · 3) = φ(22) · (3 − 1) = 4 ·
(

1 − 1
2

)
· 2 = 4 .

Indeed, only two integers are co-prime to 6, they are 1 and
5. Integers co-prime to 12 are {1, 5, 7, 11}, 4 of them in
total.



Theorem 4
If n = pe1

1 · pe2
2 · . . . · pek

k is the prime decomposition of n and
n > 0, then

ϕ(n) = n ·
(

1 − 1
p1

)(
1 − 1

p2

)
. . .

(
1 − 1

pk

)
.

The proof uses inclusion-exclusion principle from counting
theory.



Let P1,P2, . . . ,Pk be the subsets of M. We want to count
those elements of M that belong to none of Pn, i.e. we want
to compute |M \ ∪nPn|.

If k = 1, then |M \ ∪nPn| = |M| − |P1|.
If k = 2, then |M \ ∪nPn| = |M| − |P1| − |P2|+ |P1 ∩ P2|.
If k = 3, then:

|M \ ∪nPn| = |M| − |P1| − |P2| − |P3|
+ |P1 ∩ P2|+ |P2 ∩ P3|+ |P1 ∩ P3| − |P1 ∩ P2 ∩ P3| .



General case:

|M \ ∪nPn| = |M| − Σ1 + Σ2 − Σ3 + . . .( − 1)iΣi + . . . ,

where
Σi =

∑
j1,...,ji

∈ c(i)|Pj1 ∩ . . . ∩ Pji| ,

and the summation is over the set c(i) of all i-combinations
of indices 1, 2, . . . , k. There are

(k
i
)

of them.



Proof.
Let M = Zm, where m = pe1

1 · pe2
2 · . . . · pek

k . Let
Pn = {x ∈ Zm : pn|x} be the set of elements in Zm divisible
by pn. Then ϕ(n) = |M \ ∪nPn|.
This is because a ∈ Zm is invertible if none iff none of
p1, p2, . . . , pk divides a.

|Pi| =
m
pi

,

|Pi ∩ Pj| =
m

pipj
,

|Pi1 ∩ . . . ∩ Pil | =
m

pi1pi2 · · · pil
.



And hence:
ϕ(n) = m − m

p1
− m

p2
− . . .− m

pk
+

m
p1p2

+ . . .+
m

p1pk
+ . . .+

m
p2pk

− . . .− m
p1p2pk

− . . .

= m ·
(

1 − 1
p1

− 1
p2

− . . .− 1
pk

+
1

p1p2
+ . . .+

1
p1pk

+ . . .+
1

p2pk
− . . .− 1

p1p2pk
− . . .

)
= m ·

[(
1 − 1

p2
− . . .− 1

pk
+ . . .+

1
p2pk

+ . . .

)
− 1

p1
·
(

1 − 1
p2

− . . .− 1
pk

+ . . .+
1

p2pk
+ . . .

)]
= m ·

(
1 − 1

p1

)(
1 − 1

p2
− . . .− 1

pk
+ . . .+

1
p2pk

+ . . .

)
= m ·

(
1 − 1

p1

)[(
1 − . . .− 1

pk

)
− 1

p2
·
(

1 − . . .− 1
pk

)]
= m ·

(
1 − 1

p1

)(
1 − 1

p2

)
· . . . ·

(
1 − 1

pk

)
.




