ITC8190
 Mathematics for Computer Science
 Congruences

Aleksandr Lenin

October 30th, 2018

Two integers a and b are said to be congruent modulo \mathbf{n} if n divides their difference. In other words, $n \mid a-b$.

Since congruence is an equivalence relation on the set of integers, any two congruent integers fall in the same equivalence class.

$$
a \equiv b \quad(\bmod n) \Longleftrightarrow n \mid a-b \Longleftrightarrow \exists k \in \mathbb{Z}: a=b+k n .
$$

I.e.,
$-1 \equiv 2 \quad(\bmod 3), \quad 7 \equiv 1 \quad(\bmod 3), \quad 2 \equiv 12 \quad(\bmod 5)$.

We can define addition \oplus and multiplication \otimes in number domain \mathbf{Z}_{m} by

$$
\begin{aligned}
& a \oplus b=(a+b) \bmod m \\
& a \otimes b=(a \cdot b) \bmod m
\end{aligned}
$$

I.e., in \mathbb{Z}_{3}, it holds that

$$
2 \oplus 2=2 \otimes 2=1, \quad 1 \oplus 2=0
$$

and in \mathbb{Z}_{5} :

$$
2 \oplus 3=0, \quad 3 \oplus 3=3 \otimes 2=1, \quad 3 \otimes 4=2
$$

$\bmod m$ may be viewed as a function $\bmod m: \mathbb{Z} \rightarrow \mathbb{Z}_{m}$. with the following properties:

- $\bmod m$ is idemponent: $(a \bmod m) \bmod m=a \bmod m$.

$$
\begin{aligned}
(a \bmod m) \bmod m & =(a+\alpha m) \bmod m \\
& =(a+\alpha m)+\beta m=a+(\alpha+\beta) m \\
& =a \bmod m
\end{aligned}
$$

- mod m preserves operations (i.e. is a ring homomorphism):

$$
\begin{aligned}
a \bmod m+b \bmod m & =a+\alpha m+b+\beta m \\
& =a+b+(\alpha+\beta) m \\
& =(a+b) \bmod m \\
a \bmod m \cdot b \bmod m & =(a+\alpha m)(b+\beta m) \\
& =a b+\underbrace{(a \beta+\alpha b+\alpha \beta m)}_{\in \mathbb{Z}} m \\
& =(a \cdot b) \bmod m
\end{aligned}
$$

Conclusion 1

When computing

$$
a+(b \cdot(c+(d \cdot(e+f)) \ldots))
$$

we can reduce $\bmod m$ whenever we like, the result will not change.

Conclusion 2
Operations \oplus and \otimes are somewhat similar to usual addition + and multiplication \times in \mathbb{Z}.

Despite \oplus and \otimes differ from + and \times, we will use the usual notation + and \times whenever appropriate, if it will not cause confusion.

The following properties hold in \mathbb{Z}_{m} :

- Associativity: $a+(b+c)=(a+b)+c$, as well as $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
- Commutativity: $a+b=b+a$, and $a \cdot b=b \cdot a$
- Distributivity: $(a+b) \cdot c=(a \cdot c)+(b \cdot c)$
- Zero: $a+0=0+a$ (0 is the additive identity)
- Unit: $a \cdot 1=1 \cdot a \quad$ (1 is the multiplicative identity)
- Additive inverse $-a$ of element $a \in \mathbb{Z}_{m}$ is $m-a \in \mathbb{Z}_{m}$, because

$$
a+(-a)=a+m-a=m \equiv 0 \quad(\bmod m) .
$$

The following properties hold in \mathbb{Z}_{m} :

- Zero divisors: the product of two non-zero elements can be zero. I.e.,

$$
2 \cdot 3 \equiv 0 \quad(\bmod 6), \quad 3 \cdot 4 \equiv 0 \quad(\bmod 6)
$$

- The sum of two positive elements can be zero. I.e.,

$$
2+3 \equiv 0 \quad(\bmod 5), \quad 5+7 \equiv 0 \quad(\bmod 12)
$$

- Not every element a has a multiplicative inverse $a^{-1} \in \mathbb{Z}_{m}$ such that $a \cdot a^{-1}=1$. I.e., $2^{-1}=3$ in \mathbb{Z}_{5}, since

$$
2 \cdot 3=6 \equiv 1 \quad(\bmod 5)
$$

but 2 is not invertible in \mathbb{Z}_{6}.

Since some elements are not invertible in \mathbb{Z}_{n}, some congruence equations with non-invertible coefficients are not solvable. I.e.,

$$
2 \cdot x \equiv 5 \quad(\bmod 7)
$$

is solvable, and the solution is $x=6$ because

$$
2 \cdot 6=12 \equiv 5 \quad(\bmod 7)
$$

but, the equation

$$
2 \cdot x \equiv 5 \quad(\bmod 6)
$$

is not solvable.

Which elements are invertible in \mathbb{Z}_{m} ?
Theorem 1
An element $a \in \mathbb{Z}_{m}$ is invertible iff $\operatorname{gcd}(a, m)=1$.
Proof.
Let $a \in \mathbb{Z}_{m}$ be such that $\operatorname{gcd}(a, m)=1$. Then, by the Bézout identity, there exist integers α and β such that

$$
1=\operatorname{gcd}(a, b)=\alpha a+\beta m \equiv \alpha a \quad(\bmod m),
$$

which means that $a^{-1} \equiv \alpha(\bmod m)$.
Let a be an invertible element of \mathbb{Z}_{m}. Then there exists $a^{-1} \in \mathbb{Z}_{m}$ such that $a \cdot a^{-1} \equiv 1(\bmod m)$. Then $a \cdot a^{-1}+\beta m=1$ for some $\beta \in \mathbb{Z}$, and by the Bézout identity, it means that $\operatorname{gcd}(a, m)=1$.

Theorem 2

Zero divisers are not invertible in \mathbb{Z}_{m}.

Proof.

Let $a \in \mathbb{Z}_{m}, a \neq 0$ be a zero divisor, i.e. there exists $b \in \mathbb{Z}_{m}, b \neq 0$ such that $a b \equiv 0(\bmod m)$. Assume a is invertible, i.e. there exists $a^{-1} \in \mathbb{Z}_{m}$ such that $a \cdot a^{-1} \equiv 1$ $(\bmod m)$. Then

$$
\begin{aligned}
a b \equiv 0 \quad(\bmod m) & \Longrightarrow a^{-1} a b \equiv a^{-1} \cdot 0 \quad(\bmod m) \\
& \Longrightarrow b \equiv 0 \quad(\bmod m)
\end{aligned}
$$

a contradiction.

Theorem 3

The equation $a x \bmod n=c$ with $a, c \in \mathbb{Z}_{n}$ is solvable iff $\operatorname{gcd}(a, n) \mid c$.

Proof.

If the equation is solvable and $\operatorname{gcd}(a, n)=d$, then there exist integers $\alpha, \beta \in \mathbb{Z}$ such that $a=\alpha d$ and $n=\beta d$, and hence $d \mid c$, because

$$
c=a x \bmod n=a x+k n=\alpha d x+\beta d k=(\alpha x+\beta k) d,
$$

If $d=\operatorname{gcd}(a, n)$ and $d \mid c$, then $\operatorname{gcd}\left(\frac{a}{d}, \frac{n}{d}\right)=1$, and hence $\frac{a}{d}$ is invertible modulo $\frac{n}{d}$, and the equation $\frac{a}{d} x \bmod \frac{n}{d}=\frac{c}{d}$ is solvable, i.e. $\exists k \in \mathbb{Z}$:

$$
\frac{a}{d} x+k \frac{n}{d}=\frac{c}{d} \Longrightarrow a x+k n=c \Longrightarrow a x=c \quad(\bmod n) .
$$

How many invertible elements are there in \mathbb{Z}_{n} ?
The Euler's phi function (a.k.a. Euler's totient function) for any given $n>0$ returns the number of integers in the range $0, \ldots, n-1$ that are co-prime to n. Let $n=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{k}^{e^{k}}$. Then

$$
\varphi(n)=n \cdot \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

This formula works in all cases. However, if n is some prime p, then the formula takes its simplified form

$$
\varphi(p)=p-1
$$

If $n=n_{1} \cdot n_{2}$, such that $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, then

$$
\varphi\left(n_{1} \cdot n_{2}\right)=\phi\left(n_{1}\right) \cdot \phi\left(n_{2}\right)
$$

$$
\begin{aligned}
& \varphi(36)=\phi\left(2^{2} \cdot 3^{2}\right)=36 \cdot\left(1-\frac{1}{2}\right) \cdot\left(1-\frac{1}{3}\right)=36 \cdot \frac{1}{2} \cdot \frac{2}{3}=12 \\
& \varphi(6)=\phi(2 \cdot 3)=\phi(2) \cdot \phi(3)=(2-1)(3-1)=2 \\
& \varphi(12)=\varphi\left(2^{2} \cdot 3\right)=\varphi\left(2^{2}\right) \cdot(3-1)=4 \cdot\left(1-\frac{1}{2}\right) \cdot 2=4
\end{aligned}
$$

Indeed, only two integers are co-prime to 6 , they are 1 and 5. Integers co-prime to 12 are $\{1,5,7,11\}, 4$ of them in total.

Theorem 4
If $n=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}$ is the prime decomposition of n and $n>0$, then

$$
\phi(n)=n \cdot\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{k}}\right) .
$$

The proof uses inclusion-exclusion principle from counting theory.

Let $P_{1}, P_{2}, \ldots, P_{k}$ be the subsets of M. We want to count those elements of M that belong to none of P_{n}, i.e. we want to compute $\left|M \backslash \cup_{n} P_{n}\right|$.

If $k=1$, then $\left|M \backslash \cup_{n} P_{n}\right|=|M|-\left|P_{1}\right|$. If $k=2$, then $\left|M \backslash \cup_{n} P_{n}\right|=|M|-\left|P_{1}\right|-\left|P_{2}\right|+\left|P_{1} \cap P_{2}\right|$. If $k=3$, then:

$$
\begin{aligned}
\left|M \backslash \cup_{n} P_{n}\right| & =|M|-\left|P_{1}\right|-\left|P_{2}\right|-\left|P_{3}\right| \\
& +\left|P_{1} \cap P_{2}\right|+\left|P_{2} \cap P_{3}\right|+\left|P_{1} \cap P_{3}\right|-\left|P_{1} \cap P_{2} \cap P_{3}\right|
\end{aligned}
$$

General case:

$$
\left|M \backslash \cup_{n} P_{n}\right|=|M|-\Sigma_{1}+\Sigma_{2}-\Sigma_{3}+\ldots(-1)^{i} \Sigma_{i}+\ldots
$$

where

$$
\Sigma_{i}=\sum_{j_{1}, \ldots, j_{i}} \in c(i)\left|P_{j_{1}} \cap \ldots \cap P_{j_{i}}\right|
$$

and the summation is over the set $c(i)$ of all i-combinations of indices $1,2, \ldots, k$. There are $\binom{k}{i}$ of them.

Proof.

Let $M=\mathbb{Z}_{m}$, where $m=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}$. Let $P_{n}=\left\{x \in \mathbb{Z}_{m}: p_{n} \mid x\right\}$ be the set of elements in \mathbb{Z}_{m} divisible by p_{n}. Then $\phi(n)=\left|M \backslash \cup_{n} P_{n}\right|$.
This is because $a \in \mathbb{Z}_{m}$ is invertible if none iff none of $p_{1}, p_{2}, \ldots, p_{k}$ divides a.

$$
\begin{aligned}
& \left|P_{i}\right|=\frac{m}{p_{i}}, \\
& \left|P_{i} \cap P_{j}\right|=\frac{m}{p_{i} p_{j}}, \\
& \left|P_{i_{1}} \cap \ldots \cap P_{i_{l}}\right|=\frac{m}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{l}}} .
\end{aligned}
$$

And hence:

$$
\begin{aligned}
\phi(n) & =m-\frac{m}{p_{1}}-\frac{m}{p_{2}}-\ldots-\frac{m}{p_{k}}+\frac{m}{p_{1} p_{2}}+\ldots+\frac{m}{p_{1} p_{k}}+\ldots+\frac{m}{p_{2} p_{k}}-\ldots-\frac{m}{p_{1} p_{2} p_{k}}-\ldots \\
& =m \cdot\left(1-\frac{1}{p_{1}}-\frac{1}{p_{2}}-\ldots-\frac{1}{p_{k}}+\frac{1}{p_{1} p_{2}}+\ldots+\frac{1}{p_{1} p_{k}}+\ldots+\frac{1}{p_{2} p_{k}}-\ldots-\frac{1}{p_{1} p_{2} p_{k}}-\ldots\right) \\
& =m \cdot\left[\left(1-\frac{1}{p_{2}}-\ldots-\frac{1}{p_{k}}+\ldots+\frac{1}{p_{2} p_{k}}+\ldots\right)-\frac{1}{p_{1}} \cdot\left(1-\frac{1}{p_{2}}-\ldots-\frac{1}{p_{k}}+\ldots+\frac{1}{p_{2} p_{k}}+\ldots\right)\right] \\
& =m \cdot\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}-\ldots-\frac{1}{p_{k}}+\ldots+\frac{1}{p_{2} p_{k}}+\ldots\right) \\
& =m \cdot\left(1-\frac{1}{p_{1}}\right)\left[\left(1-\ldots-\frac{1}{p_{k}}\right)-\frac{1}{p_{2}} \cdot\left(1-\ldots-\frac{1}{p_{k}}\right)\right]=m \cdot\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdot \ldots \cdot\left(1-\frac{1}{p_{k}}\right)
\end{aligned}
$$

THANK YOU FOR
 YOUR ATTENTION ANY QUESTIONS?

