
1 Modular Exponention Function
An integer g is a primitive root modulo n if every integer a coprime to n is congruent to a power
of g modulo n. For every integer a coprime to n, there exists an integer k such that a = gk mod n.
In other words, g is the generator of a multiplicative group modulo n :< g >= U(n) = Z×

n . It is
also called a primitive element in U(n).

Example 1. 3 is a primitive root modulo 7, since

< 3 >= {3, 2, 6, 4, 5, 1} = U(7) .

Group U(n) is cyclic iff n ∈ {2, 4, pk, 2pk}, where pk is some power of an odd prime number p.

Example 2. Find primitive elements in Z×
14.

Solution. Z×
14 = {1, 3, 5, 9, 11, 13}.

⟨3⟩ = {3, 9, 13, 11, 5, 1}
⟨5⟩ = {5, 11, 13, 9, 3, 1}
⟨9⟩ = {9, 11, 1}
⟨11⟩ = {11, 9, 1}
⟨13⟩ = {13, 1}

The primitive elements are 3 and 5, since Z×
14 = ⟨3⟩ = ⟨5⟩.

Example 3. Verify if 2 and 3 are primitive roots modulo 11.

Solution. Since a primitive root modulo 11 generates U(11), the order of a generator is φ(11) = 10.
Observe that

⟨2⟩ = {2, 4, 8, 5, 10, 9, 7, 3, 6, 1} = U(11)

⟨3⟩ = {3, 9, 5, 4, 1} ̸= U(11)

It can be seen that ord 2 = 10 and ord 3 = 5. Hence, 2 is a primitive root modulo 11, while 3 is
not.

No simple general formula for computing primitive roots modulo n is known. The number of
primitive roots modulo n (if there are any), is equal to φ(φ(n)), since in general a cyclic group of
order r has φ(r) generators.

2 Diffie-Hellman Key Establishment
2.1 Key Establishment Protocol
Alice and Bob agree on common parameters – a cyclic group G, its generator g ∈ G, its order
|G| = q. Alice selects x ∈ Zq and sends gx to Bob. Bob selects y ∈ Zq and sends gy to Alice. Alice
computes gxy = (gy)x ∈ G. Bob computes gxy = (gx)y ∈ G.
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2.2 MITM Attack Against DH
Alice and Bob agree on common parameters – a cyclic group G, its generator g ∈ G, its order
|G| = q. Alice selects x ∈ Zq and sends gx to Bob, but Carol intercepts this message. She generates
z ∈ Zq, and impersonating Alice sends gz to Bob. Bob selects y ∈ Zq and sends gy to Alice. Carol
intercepts this message, and impersonating Bob, sends gz to Alice. Alice computes gxz = (gz)x ∈ G.
Bob computes gyz = (gz)y ∈ G. Carol computes gxz = (gx)z ∈ G, and gyz = (gy)z ∈ G.

3 O- and o- notations
The assertion f(n) = O(g(n)) if for sufficiently large values of n, the value of f(n) is at most a
positive constant multiple of g(n).

f(n) = O(g(n)) ⇐⇒ ∃k ∈ R, k > 0, ∃n0 ∈ R∀n ∈ R, n > n0 : f(n) ⩽ k · g(n) .

This means that
lim sup
n→∞

f(n)

g(n)
<∞ .

Example 4. Show that 3n3 + 2n2 = O(n3).

Solution.
lim sup
n→∞

3n3 + 2n2

n3
= lim sup

n→∞
3 +

2

n
= 3 <∞ .

The assertion f(n) = o(g(n)) intuitively means that g(n) grows much faster than f(n).

f(n) = o(g(n)) ⇐⇒ ∀ε ∈ R, ε > 0,∃n0 ∈ R∀n ∈ R, n > n0 : f(n) < ε · g(n) .

This means that
lim
n→∞

f(n)

g(n)
= 0 .

Example 5. Show that n2 ̸= o(n).

Solution. There exists k = 5 and n0 = 1 such that for all n > 1 it holds that 3n3 + 2n2 ⩽ 5n3.

lim
n→∞

n2

n
= lim

n→∞
= ∞ ̸= 0 .

Example 6. Show that n2 = o(n3).

Solution. There exists n0 = 0 such that for all n > n0 and for every arbitrarily small value ε it
holds that n2 < ε · n3.

limn→ ∞n2

n3
= limn→ ∞ 1

n
= 0 .
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4 The notion of S-security and security bits
Definition 1. A problem P is S-secure against attack X if every adversary A that uses t time
units has success

δ ⩽ t

S
,

where t is the time measured in block cipher units, and S is the left-cost of P (also measured in
block cipher units).

In other words, for all adversaries A with running time t it holds that
t

δ
⩾ S .

The value t/δ is called the adversarial cost–success ratio. It turns out that not t nor δ determine
the self-cost of P , but their ratio, the cost–success ratio.

5 RSA setup
Example 7. Given prime numbers p and q, find suitable public and private exponents.
Solution. Given p and q, they determine n = pq. Also φ(n) = φ(pq) = φ(p)φ(q) = (p− 1)(q − 1)
is known. Public exponent e and private exponent d are tied together by the following relation
ed ≡ 1 (mod φ(n)). Hence e and d must be invertible elements modulo φ(n). It means that
gcd(φ(n), e) = gcd((p − 1)(q − 1), e) = 1 =⇒ gcd(p − 1, e) = gcd(q − 1, e) = 1. Then d = e−1

(mod φ(n)).
Example 8. Given a public exponent, find suitable prime numbers.
Solution. Public exponent e must be invertible modulo φ(n), and the primes p and q determine
n. Suitable prime numbers p and q are the ones such that gcd(p− 1, e) = gcd(q − 1, e) = 1.
Example 9. Given a public exponent, determine if given primes are OK for RSA.
Solution. Given a public exponent e and primes p and q, we need to check if gcd(p − 1, e) =
gcd(q − 1, e) = 1.

6 Probabilistic Prime Number Tests
Example 10. Given the required reliability of the test, calculate number of trials.
Solution. If n runs of the probabilistic prime number test (such as Fermat test or Miller-Rabin
test) succeeded, then the probability that a given integer is prime is 1 − 2−n. If the reliability of
the test is required, i.e. the probability must be at least p, then we obtain inequality p ⩽ 1− 2−n

or 2−n ⩽ 1− p. Taking log2 on both sides gives us n ⩾ − log2 (1− p).
Example 11. How many iterations of probabilistic primality test do we need to make to reach
confidence at least 0.999?
Solution. It can be seen that

0.999 ⩽ 1− 2−n =⇒ 2−n ⩽ 0.001 =⇒ log2 2
−n ⩽ log20.001 =⇒ −n ⩽ −9.96 =⇒ n ⩾ 9.96 .

The smallest such integer is n = 10. Indeed, 1− 2−10 = 1023
1024 ≈ 0.9990234375.
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7 Common Modulus RSA
Suppose the same message m was encrypted to two people with private keys (e1, n) and (e2, n),
with e1 ̸= e2. If gcd(e1, e2) = 1, then by the Bézout identity there exist integers α, β ∈ Z such that
αe1 + βe2 = 1. Then the attacker can exploit this identity to recover message m as

(me1)α mod n · (me2)β mod n = mαe1+βe2 mod n = m mod n .

Example 12. Suppose the cryptogram c1 = 537 was encrypted with public key (e = 18, n = 943)
and the cryptogram c2 = 285 was encrypted with public key (e = 19, n = 943), and the same
message m was encrypted, then

gcd(18, 19) = 1 = 1 · 19 + (−1) · 18
537−1 · 285 mod 943 = 72 · 285 mod 943 = 717 mod 943 .

8 Chinese Remainder Theorem
Example 13. Solve for x: {

x ≡ 7 (mod 12)

x ≡ 11 (mod 13)

Solution.

gcd(12, 13) = 1 = (−1) · 12 + 1 · 13
x = −11 · 12 + 7 · 13 = 91− 132 = −41 ≡ 115 (mod 156)

Example 14. Solve for x: 
x ≡ 11 (mod 25)

x ≡ 14 (mod 19)

x ≡ 13 (mod 17)

Solution.

N = 25 · 19 · 17 = 8075

N1 =
8075

25
= 323 , gcd(25, 323) = 1 = (−155) · 25 + 12 · 323

N2 =
8075

19
= 425 , gcd(19, 425) = 1 = 179 · 19 + (−8) · 425

N3 =
8075

17
= 475 , gcd(17, 475) = 1 = 28 · 17 + (−1) · 475

x = 11 · 12 · 323 + 14 · (−8) · 425 + 13 · (−1) · 475 = 42636− 47600− 6175 = −11139 ≡ 5011 (mod 8075)

5011 ≡ 11 (mod 25) , 5011 ≡ 14 (mod 19) , 5011 ≡ 13 (mod 17)
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9 Finding Nontrivial Square Roots of 1

If the prime factorization of n is n = pe11 · · · pekk , then Z×
n

∼= Z×
p
e1
1

× . . . × Z×
p
ek
k

. Each group Z×
p
ei
i

is a cyclic prime order group, there are exactly two trivial roots of unity, 1 and pekk − 1, and no
nontrivial roots, and the total amount of roots of unity in Z×

n is 2k, where 2 of them are trivial and
2k − 1 are nontrivial.

Example 15. Find nontrivial roots of unity in Z×
315, given that 315 = 32 · 5 · 7.

Solution. It is known that Z×
315

∼= Z×
9 ×Z×

5 ×Z×
7 . Group Z×

9 has two nontrivial roots of unity 1 and
8, the roots of unity in Z×

5 are 1 and 4, and the roots of unity in Z×
7 are 1 and 6. Hence, Z×

315 has 8
roots of unity in total – 2 trivial and 6 nontrivial. Consider the mapping ψ : Z×

9 ×Z×
5 ×Z×

7 → Z×
315:

(1, 1, 1) 7→ 1 (8, 1, 1) 7→ 71

(1, 1, 6) 7→ 181 (8, 1, 6) 7→ 251

(1, 4, 1) 7→ 64 (8, 4, 1) 7→ 134

(1, 4, 6) 7→ 244 (8, 4, 6) 7→ 314

Suppose you learn that ak ≡ 1 (mod n). If k is even, it is a multiple of 2. If we express k in the
form k = 2s · d, then we can apply the Miller-Rabin algorithm to find the nontrivial square root of
1 modulo n.

Example 16. Suppose you are looking for nontrivial square roots of 1 modulo 2491, and you have
learned that 74784 ≡ 1 (mod 2)491. You can express 4784 as 24 · 299 and apply the Miller-Rabin
algorithm as follows

7299 mod 2491 = 847

8472 mod 2491 = 1

Square roots of 1 modulo n can be found using the Miller–Rabin algorithm, if we manage to
find base a for which n is a probable prime to

1. n is a probable prime to base a

2. n is a strong pseudoprime to base a

Exercise 1. Suppose you have found a base 187 for which 1457 is a probable prime and a strong
pseudoprime. 1456 = 24 · 91.

18791 mod 1457 = 187

1872 mod 1457 = 1

Hence, 187 is a nontrivial square root of 1 modulo 1457.
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10 Factoring with Nontrivial Square Roots of 1 modulo n

If n is a product of two primes and a is a nontrivial square root of 1 modulo n, such that a2 ≡ 1
(mod n), then the factors of n can be obtained by calculating gcd(a− 1, n) and gcd(a+ 1, n).

Example 17. Consider n = 221, and a nontrivial square root of 1 is 103, meaning that 1032 ≡ 1
(mod 221). The goal is to factor 221 into two distinct primes p and q.

Solution.

p = gcd(102, 221) = 17

q = gcd(104, 221) = 13

Hence, 221 = 13 · 17.

11 Small Public Modulus Attack Against Pure RSA
Example 18. Suppose the same message was encrypted with public keys (e = 3, n = 377), (e =
3, n = 391), (e = 3, n = 589). The three cryptograms are 330, 34, 419. Find m.

Solution. The solution to the CRT

C ≡ 330 (mod 377)

C ≡ 34 (mod 391)

C ≡ 419 (mod 589)

is 1061208 mod 86822723, which is m3. Taking cubic root of it reveals the message
3
√
1061208 = 102 .

12 Blind Signatures and Chaum’s Digital Cash
A form of digital signature in which the content of a message is blinded before it is signed, so
that the signer never sees the message. The resulting signature can be verified against the original
message as a regular digital signature.

Blind signature schemes exist for many public key signing protocols. One of the simplest blind
signature schemes is based on RSA.

The message author generates a random blinding factor r ∈ Z×
φ(n) with gcd(r, n) = 1. The

value re mod n is used as the blinding factor. The message author submits m′ = m · re mod n to
the signing authority, who signs m′, and the blinded signature is s′ = (m′)d mod n. This signature
is sent back to the author, who removes the blinding factor to obtain the signature s ≡ s′ · r−1

(mod n) on the original message. It can be seen that

s ≡ s′ · r−1 (mod n) =⇒ (m · re mod n)d · r−1 mod n = md · red · r−1 mod n = md mod n .

The signature s can be verified as any other RSA signature: se mod n = med mod n = m.
For Chaum’s digital cash read https://www.win.tue.nl/~berry/papers/cosic.pdf.
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Homomorphic properties of RSA can be used to attack coins and make a third coin out of exist-
ing two. Let the first coin be cd1 mod n, and the second coin be cd2 mod n. Due to the homomorphic
properties of plain RSA, the product of signatures is a signature of the product. Hence,

cd1 mod n · cd2 mod n = (c1 · c2)d mod n .

13 Homomorphic Properties of RSA
A mapping φ : (G, ·) → (H, •) is a homomorphism if φ is injective and the group operation is
preserved

∀a, b ∈ G : φ(a · b) = φ(a) • φ(b) .

RSA is homomorphic w.r.t multiplication – the product of two cryptograms is the encrypted product
of two plaintexts, and the encryption function is homomorphism. Let the encryption function be
E. Then

E(m1 ·m2) = E(m1) · E(m2) ,

where · is the multiplication operation. Homomorphic cryptosystems are not IND-CCA2 secure
(not secure against adaptive chosen ciphertext attacks). It can be shown that plain RSA is not
IND-CCA2 secure by demonstrating that there exists an adversary which can always win the IND-
CCA2 game. When such an adversary receives the challenge cryptogram from the challenger, it
uses an encryption oracle to compose his own crafted cryptogram containing some blinding factor
as the message, then submits the product of this cryptogram and the challenge cryptogram to the
decryption oracle, thus obtaining the product of the original message and the blinding factor. All
such an adversary needs to do is to divide the result by the blinding factor to reveal the message.
Using this procedure, an adversary can always win the IND-CCA2 game.
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