
ITC8190
Mathematics for Computer Science

Mathematical Induction

Aleksandr Lenin

November 20th, 2018



Suppose we wish to show that for all n ∈ N:

1 + 2 + . . .+ n =
n(n + 1)

2

• easy to verify for small values such as n = 1, 2, 3, 4
• impossible to verify for all n ∈ N on a case-by-case

basis.
To prove the formula in general, a more generic proof
method is required.



This method of proof is known as mathematical
induction.

Instead of attempting to verify a statement on a
case-by-case basis, a specific proof for the smallest
considered integer is given, followed by a generic
argument showing that if the statement holds for a
given case, it must also hold for the next case in the
sequence.



I.e., suppose we want to show that we can climb as high as
we like on a ladder.

So show this using mathematical induction, we show that
• We can climb on the first rung (the basis)
• From each rung we can climb on the next one (the

step)
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Suppose we wish to show that for all n ∈ N:

1 + 2 + . . .+ n =
n(n + 1)

2

The formula is true for 1, since 1 = 1(1+1)
2 . If it holds for

some n, we show that it holds for n + 1.

1 + 2 + . . .+ n + (n + 1) = n(n + 1)
2 + n + 1

=
n(n + 1) + 2(n + 1)

2

=
(n + 1)[(n + 1) + 1]

2

is exactly the formula for (n + 1)th case.



We summarize mathematical induction in the following
axiom.

Definition 1 (First Principle of Mathematical
Induction)
Let S(n) be a statement about integers for n ∈ N and
suppose S(n0) is true for some integer n0. If for all integers
k ⩾ n0 : S(k) =⇒ S(k + 1), then S(n) is true for all integers
n ⩾ n0.



Let us show that for all n ⩾ 3 it holds that 2n > n + 4.

Base The statement is true for n0 = 3, since

8 = 23 ⩾ 3 + 4 = 7 .

Step Assume 2k > k + 4 some k ⩾ 3. Then for k + 1

2k+1 = 2·2k ⩾ 2(k+4) = 2k+8 > k+5 = (k+1)+4 .

Therefore, 2k+1 ⩾ (k + 1) + 4.



Every integer 10n+1 + 3 · 10n + 5 is divisible by 9 for n ∈ N.

The statement is true for n = 1, since

102 + 30 + 5 = 135 = 9 · 15 .

Suppose 10k+1 + 3 · 10k + 5 is divisible for some k ⩾ 1. Then

10k+2 + 3 · 10k+1 + 5 = 10 · 10k+1 + 10 · 3 · 10k + 50 − 45
= 10 · (10k+1 + 3 · 10k + 5)− 45

is divisible by 9.



We will prove the binomial theorem using mathematical
induction.

(a + b)n =
n∑

k=0

(
n
k

)
akbn−k ,

where a, b ∈ R, n ∈ N, and(
n
k

)
=

n!
k!(n − k)! .

For n = 1 the binomial theorem is easy to verify.

(a + b)1 =
1∑

k=0

(
1
k

)
akb1−k = a0b1 + a1b0 = a + b .



Lemma 1 (
n + 1

k

)
=

(
n
k

)
+

(
n

k − 1

)

Proof.

(
n
k

)
+

(
n

k − 1

)
=

n!
k!(n − k)! +

n!
(k − 1)!(n − k + 1)!

=
(n + 1)!

k!(n − k + 1)! =
(

n + 1
k

)
.



Assume the binomial theorem holds for n ⩾ 1, then

(a + b)n+1 = (a + b)(a + b)n = (a + b)
( n∑

k=0

(
n
k

)
akbn−k

)

=
n∑

k=0

(
n
k

)
ak+1bn−k +

n∑
k=0

(
n
k

)
akbn+1−k

= an+1 +
n∑

k=1

(
n

k − 1

)
akbn+1−k +

n∑
k=1

(
n
k

)
akbn+1−k + bn+1

= an+1 +
n∑

k=1

[(
n

k − 1

)
+

(
n
k

)]
akbn+1−k + bn+1

= an+1 +
n∑

k=0

(
n + 1

k

)
akbn+1−k =

n+1∑
k=0

(
n + 1

k

)
akbn+1−k .



Definition 2 (Second Principle of Mathematical
Induction)
Let S(n) be a statement about integers for n ∈ N, and
suppose S(n0) holds for some integer n0. If for k ⩾ n0

S(n0), S(n0 + 1), . . . , S(k) =⇒ S(k + 1) ,

then S(n) is true for all n ⩾ n0.



The Principle of Mathematical Induction is equivalent to
the Principle of Well–Ordering.
Definition 3 (Principle of Well–Ordering)
Every non-empty subset of N has a least element.

The set Z is not well-ordered, since it does not contain a
smallest element.



Lemma 2
The Principle of Mathematical Induction implies that 0 is
the least natural number.

Proof.
Let S = {n ∈ N : n ⩾ 0}. Then 0 ∈ S. Now assume that
n ∈ S, and n ⩾ 0. Since n + 1 ⩾ 0, then n + 1 ∈ S. Hence,
by induction, every natural number is greater than or equal
to 0.



Theorem 1
The Principle of Mathematical Induction implies that the
natural numbers are well ordered.

Proof.
We must show that if S ⊆ N and S ̸= ∅, then S contains a
smallest element. If 0 ∈ S, then the theorem is true by
Lemma 2. Assume that if k ∈ S with 0 ⩽ k ⩽ n, then S
contains a smallest element. We will show that if k ∈ S
with 0 ⩽ k ⩽ n+ 1, then S has a smallest element. If S does
not contain an integer less than n + 1, then n + 1 is the
smallest integer in S. Otherwise, since S is non-empty, S
must contain an integer less than or equal to n. In this
case, by induction, S contains a smallest integer.



Induction can also be useful in formulating definitions. For
instance, there are two ways to define the factorial of a
positive integer n.

• The explicit definition: n! = 2 · 3 · · · (n − 1) · n.
• The inductive or recursive definition: 1! = 1 and

n! = n(n − 1) for n > 1.




