1. Alice and Bob generate a session key using the Diffie-Hellman key establishment protocol. They agree on a finite cyclic group \mathbb{Z}_{23}^{\times} generated by 5. What is the order of \mathbb{Z}_{23}^{\times} ? Suppose that Alice's private exponent is 2, and Bob's private exponent is 3, what is the session key generated by Alice and Bob?

Solution. Alice computes $5^2 = 25 \equiv 2 \pmod{23}$ and sends it to Bob. Bob computes $5^3 = 125 \equiv 10 \pmod{23}$ and sends this value to Alice. To get the session key, Alice computes $10^2 = 100 \equiv 8 \pmod{23}$ and Bob computes $2^3 = 8 \pmod{23}$.

- 2. Consider the following key agreement protocol between Alice (A) and Bob (B). Prior to starting any communication, Alice and Bob generate their secret keys ω_A and ω_B . Alice generates the session key K. To share K with Bob, the following sequence of messages is executed.
 - (1) Alice \rightarrow Bob: $\omega_A \oplus K$.
 - (2) Bob \rightarrow Alice: $\omega_B \oplus \omega_A \oplus K$
 - (3) Alice \rightarrow Bob: $\omega_A \oplus \omega_B \oplus \omega_A \oplus K = \omega_B \oplus K$

After receiving the last message, Bob computes $\omega_B \oplus \omega_B \oplus K = K$. At this point Alice and Bob have the shared key K which they use to encrypt the communication. Can adversary Carol obtain the key K by eavesdropping on the communication channel?

Solution. Having obtained messages 1, 2 and 3, Carol can run an exclusive or operation on all three messages and reveal the shared secret K. Observe that

$$m_1 \oplus m_2 = \omega_A \oplus K \oplus \omega_B \oplus \omega_A \oplus K = \omega_B ,$$

$$(m_1 \oplus m_2) \oplus m_3 = \omega_B \oplus \omega_B \oplus K = K .$$

3. Provide prime factorization of the following integers:

Solution.

(a)
$$64 = 2^{6}$$
 (b) $120 = 2^{3} \cdot 3 \cdot 5$
(c) $375 = 15 \cdot 25 = 3 \cdot 5^{3}$ (d) 47

4. Given a list of functions in asymptotic notation, order them by growth rate (slowest to fastest).

Solution. (a) $\Theta(1)$

(b) $\Theta(n^2 \log_2 n)$

(c) $\Theta(n)$

- (d) $\Theta(n \log_2 n)$
- (e) $\Theta(n^2)$
- (f) $\Theta(n^2 \log_2 n)$
- (g) $\Theta(n^3)$
- (h) $\Theta(2^n)$
- (i) $\Theta(2^n \log^2 n)$
- (j) $\Theta(n!)$

5. Check if the following conditions are true

(a)
$$\Theta(n+30) = \Theta(3n-1)$$
,
(b) $\Theta(n^2+2n-10) = \Theta(n^2+3n)$
(c) $\Theta(n^3 \cdot 3n) = \Theta(n^2+3n)$.

Solution. (a) true (b) true (c) false

6. Write each of the following functions in O notation.

0

5

(a) $5 + 0.001n^3 + 0.025n$ (b) $500n + 100n^{1.5}$ (c) $0.3n + 5n^{1.5} + 2.5n^{1.75}$

Solution.

$$O(n^3)$$
, $O(n^{1.5})$, $O(n^{1.75})$.

(a) Maximal clique problem (b) graph 3-coloring problem

7. Find the maximal clique in the graph shown in Fig. 1a. A subgraph H of a graph G is a maximal clique in G if there is an edge between every pair of vertices in H, and there is no vertex in $G \setminus H$ connected to every vertex in H.

Solution. The vertices belonging to the maximal clique are marked in blue.

8. Provide a 3–coloring of the graph shown in Fig. 1b so that any two adjacent vertices do not share the same color.

Solution. To verify if the graph in Fig. 1b is 3-colorable, we reduce this problem to a 3-SAT instance, and run it through an SMT solver. The reduction of the 3-SAT to 3-colorability is pretty straightforward and can be easily inferred by readin the 3-SAT model. You can see the 3-SAT formulation of the task in file named "3sat". To verify uncolorability, copy-paste the model into Z3 solver the online version of which can be found here: https://rise4fun.com/z3.

The result is that this graph is **usatisfiable**, which means that it is also not 3–colorable. The unsatisfiability core (the least set of edges, the vertices of which cannot be 3-colorable) is

(v1v2 v2v3 v3v4 v2v4 v4v5 v5v6 v4v6 v6v7 v7v8 v6v8 v8v9 v9v10 v8v10 v10v11 v11v12 v10v12 v1v12 v2v12 v1v7 v5v11 v3v9)