1 Exercises

Exercise 1. How would you test if an integer n is prime, using the brute-force approach?
Solution. We need to check if n is co-prime to all integers in the range $[2, \sqrt{n}]$. If it is the case, then n is prime.

Exercise 2. Apply Fermat primality test to verify the primality of 351,511 , and 717 .
Solution. For 351 , take $a=2$ and we have $2^{350} \bmod 351=121 \neq 1$, hence, 2 is a Fermat witness, and 351 is composite.

For 511, take $a=2$ and we have $2^{510} \bmod 511=64 \neq 1$, hence 2 is a Fermat witness, and 511 is composite.

For 717 , take $a=2$ and we have $2^{716} \bmod 717=4 \neq 1$, hence 2 is a Fermat witness, and 717 is composite.

Exercise 3. Solve for $x: x^{2} \bmod 63=1$, where 63 is the product of two primes 7 and 9 .
Solution. We need to find the square roots of 1 is \mathbb{Z}_{63}. By the Chinese Remainder Theorem, $\mathbb{Z} / 63 \mathbb{Z} \cong \mathbb{Z} / 7 \mathbb{Z} \times \mathbb{Z} / 9 \mathbb{Z}$, and isomorphism $\varphi: \mathbb{Z} / 63 \mathbb{Z} \rightarrow \mathbb{Z} / 7 \mathbb{Z} \times \mathbb{Z} / 9 \mathbb{Z}$ is given by $\varphi(n \bmod$ 63) $\mapsto(x \bmod 7, x \bmod 9)=\left(x_{7}, x_{9}\right)$. To find the square roots of unity, we need to find elements $\left(x_{7}, x_{9}\right)$ that would satisfy $\left(x_{7}^{2} \bmod 7, x_{9}^{2} \bmod 9\right)=(1,1)$. For this, we solve a system of equations $\left\{\begin{array}{ll}x_{7}^{2} \bmod 7=1, & \text { and hence } x_{7}=1 \text { or } x_{7}=6, \\ x_{9}^{2} \bmod 9=1, & \text { and hence } x_{9}=1 \text { or } x_{9}=8 .\end{array}\right.$ The possible values for $\left(x_{7}, x_{9}\right)$ form 4 combinations: $(1,1),(1,8),(6,1),(6,8)$. Now we need to map these elements back into $\mathbb{Z} / 63 \mathbb{Z}$. The inverse isomorphism $\psi: \mathbb{Z} / 7 \mathbb{Z} \times \mathbb{Z} / 9 \mathbb{Z} \rightarrow \mathbb{Z} / 63 \mathbb{Z}$ is given by the solution to the CRT $\left\{\begin{array}{l}x \equiv x_{p}(\bmod p) \\ x \equiv x_{q}(\bmod q)\end{array} \quad\right.$ given by $\psi:\left(x_{p}, x_{q}\right) \mapsto \beta q x_{p}+\alpha p x_{q} \bmod n$, where α and β are the Bézout coefficients of $\operatorname{gcd}\left(x_{p}, x_{q}\right)=\alpha p+\beta q$. The Bézout identity is $\operatorname{gcd}(7,9)=4 \cdot 7+(-3) \cdot 9=1$. Hence, $\alpha=4$ and $\beta=-3$.

Solving $\left\{\begin{array}{l}x \equiv 1(\bmod 7) \\ x \equiv 1(\bmod 9)\end{array}\right.$
Solving $\left\{\begin{array}{l}x \equiv 1(\bmod 7) \\ x \equiv 8(\bmod 9)\end{array}\right.$
has a trivial solution $x=1 \in \mathbb{Z} / 63 \mathbb{Z}$.
gives the solution $x=8 \in \mathbb{Z} / 63 \mathbb{Z}$.
Solving $\left\{\begin{array}{l}x \equiv 6(\bmod 7) \\ x \equiv 1(\bmod 9)\end{array}\right.$
Solving $\left\{\begin{array}{l}x \equiv 6(\bmod 7) \\ x \equiv 8(\bmod 9)\end{array}\right.$
gives the solution $x=-3 \cdot 9 \cdot 6+4 \cdot 7 \cdot 1=-134 \equiv 55 \in \mathbb{Z} / 63 \mathbb{Z}$.
gives the solution $x=-3 \cdot 9 \cdot 6+4 \cdot 7 \cdot 8=62 \in \mathbb{Z} / 63 \mathbb{Z}$.
To conclude, there are four 2-nd roots of unity in $\mathbb{Z} / 63 \mathbb{Z}$, they are: $1,8,55,62$.
Exercise 4. Adversary Carol has intercepted two RSA cryptograms, $y_{1}=537$ sent by Alice to Bob, and $y_{2}=285$ sent by Alice to Eve. The public key of Bob is ($e_{1}=18, n_{1}=943$), and the public key of Eve is ($e_{2}=19, n_{2}=943$). What is the message m sent by Alice to Bob and Eve?

Solution. Carol knows that Bob and Eve receive the same message m. Hence,

$$
\begin{aligned}
& 537=m^{18} \bmod 943, \\
& 285=m^{19} \bmod 943
\end{aligned}
$$

Since the public moduli of Bob and Eve are co-prime, meaning that $\operatorname{gcd}(18,19)=1$, the Bézout identity applies.

$$
\operatorname{gcd}(18,19)=1 \cdot 19+(-1) \cdot 18=1
$$

Carol needs to combine y_{1} and y_{2} in such a way that would exploit the Bézout identity to get m. Observe that given $\alpha \cdot e_{1}+\beta \cdot e_{2}=1$ implies that

$$
y_{1}^{\alpha} \cdot y_{2}^{\beta}=\left(m^{e_{1}}\right)^{\alpha} \cdot\left(m^{e_{2}}\right)^{\beta}=m^{\alpha \cdot e_{1}} \cdot m^{\beta \cdot e_{2}}=m^{\alpha \cdot e_{1}+\beta \cdot e_{2}}=m^{1}=m .
$$

Given that $\alpha=-1$, and hence $y_{1}^{\alpha}=537^{-1} \equiv 72(\bmod 943)$ and $\beta=1$, Carol needs to compute

$$
m=72 \cdot 285 \bmod 943=717
$$

Exercise 5. Suppose that adversary Carol has intercepted three cryptograms y_{1}, y_{2}, y_{3} sent to three different users whose public keys are $\left(e, n_{1}\right),\left(e, n_{2}\right),\left(e, n_{3}\right)$. Notice that all public keys use the same public exponent, and different moduli. What does Carol needs to do to reconstruct the message m ?

Solution. Carol knows that

$$
\begin{aligned}
& y_{1}=m^{3} \bmod n_{1} \\
& y_{2}=m^{3} \bmod n_{2} \\
& y_{3}=m^{3} \bmod n_{3}
\end{aligned}
$$

and she knows that $m<n_{1}, m<n_{2}, m<n_{3}$. Hence, $m^{3}<n_{1} \cdot n_{2} \cdot n_{3}$, and therefore m^{3} is the solution to the CRT

$$
\left\{\begin{array}{l}
x \bmod n_{1}=y_{1} \\
x \bmod n_{2}=y_{2} \\
x \bmod n_{3}=y_{3}
\end{array}\right.
$$

CRT guarantees the existence of the solution, and that the solution is unique. Since m^{3} solves the CRT, it must be this unique solution. All that Carol needs to do now is to calculate

$$
m=\sqrt[3]{m^{3}}
$$

to reconstruct the message m.
If the public exponent is relatively small, say, n, then the adversary needs to intercept n cryptograms in order to be able to decipher it.

