Formal methods: Lecture 2 11.02.2015

1

Model Checking I: TRANSITION SYSTEMS

Model Checking (MC) problem: intuition

- Correct design means that certain correctness properties must be satisfied by the system to be developed
- Correctness properties state what behaviours/features are correct and what are not in the system.
- To apply rigorous verification methods both
 - system description and
 - correctness properties description
 - must be formalised
- System is described formally with its <u>model</u>
- Properties are specified formally as <u>logic expressions</u>.

Model Checking (formally)

Satisfaction relation symbolically:

$M \models \varphi$?

"Does model *M* satisfy logic expression φ ?"

- Property φ is stated often in temporal logic
- M is a state-transition system that models the behavior of the implementation to be verified

<u>Procedural view</u>:

Model checking is an enumeration method of the state space of *M* to determine if it satisfies the property *φ*.

Advantage of MC

- Fully automatic
- Diagnostic trace (counter example) generated by checker helps to analyze the source of the problem
- Good for bug-hunting, i.e a "debugger" that does not require full execution of your program.

Modelling

How to get *M*?

- 1. By the process of abstraction:
 - Makes verification possible by retaining the part of the system that is relevant to modeling;
 - Should not discard too much so that the result lacks certainty, or too little so that the verification is not feasible;
 - Usually done by human (novel automatic model extraction techniques are gaining popularity).
- 2. By observation and learning (model learning)

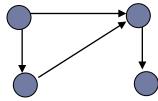
Choice of models

- We focus on <u>state-transition systems</u>. They are
 - acceptable by model checkers;
 - mostly <u>finite</u> set of states and transitions;
 - also push-down automata/systems are possible;
 - source programs can also be used as models, e.g., Pathfinder for Java code;
 - in symbolic encoding the logic formula specify abstract properties instead of explicit state behavior modelling.

Modeling notions

State

- We want to express what is true in a particular state
- A *state* is a "snapshot" of the system variables' valuation(s).
- Transition represents relation between states.
 - Can be an abstraction of
 - **C program** statement, e.g. *x*++;
 - an electronic circuit



or just an arrow, the source and destination states of which matter.

Atomicity

- Atomic transition <u>uninterruptable</u> when started
- Atomicity determines the abstraction level of the model
 - too big step may miss intermediate states that are relevant;
 - too small step may blow up the model unnecessarily.
- Atomicity of transitions must consider concurrency
 - possible interleavings of transitions and <u>interactions</u> must be explicit.

Kripke Structure (KS)

One of the classical STSs

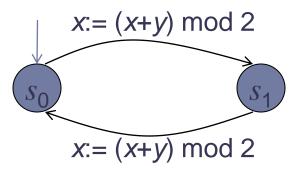
- 4-tuple (*S*, *S*₀, *L*, *R*) over a set of atomic propositions *AP* where
 - S is a set of (control) states
 - S_0 is initial state
 - *L* is a labeling function: $S \rightarrow 2^{AP}$
 - R is the transition relation:

 $S \rightarrow 2^{A}$ S x S

Example of KS

Assume in s_0 x=1 and y=1

- $S = \{s_0, s_1\}$
- $S_0 = \{s_0\}$
- $R = \{(s_0, s_1), (s_1, s_0)\}$
- $L(s_0) = \{x=1, y=1\}$
- $L(s_1) = \{x=0, y=1\}$



Modeling Reactive System

- Reactive systems:
 - b do not terminate;
 - interact with their environment constantly;
 - ▶ *KS* is just one way of modeling them.
- Consider KS as a simple modeling language for RS-s.

Properties of reactive systems to verify

- race condition the output depends on the sequence of uncontrollable events. It becomes a bug when events do not happen in the order the programmer intended, e.g.
 - <u>in file systems</u>, programs may "collide" in their attempts to modify or access a file, which could result in data corruption;
 - in networking, two users of different servers on different ends of the network try to start the same-named channel at the same time.
- deadlock all processes are infinitely waiting after each other for releasing the resources. Generally undecidable, practical only for finite state processes.
- starvation blocking resources for only some processes.
- etc.

Modeling Concurrent Programs with KS

- Steps of constructing KS from a program (by Manna, Pnueli):
 - 1. Abstract (sequential) component programs as logic relations.
 - 2. Compose the logic relations for the *concurrent program.*
 - 3. Compute a Kripke structure from the logic relations.

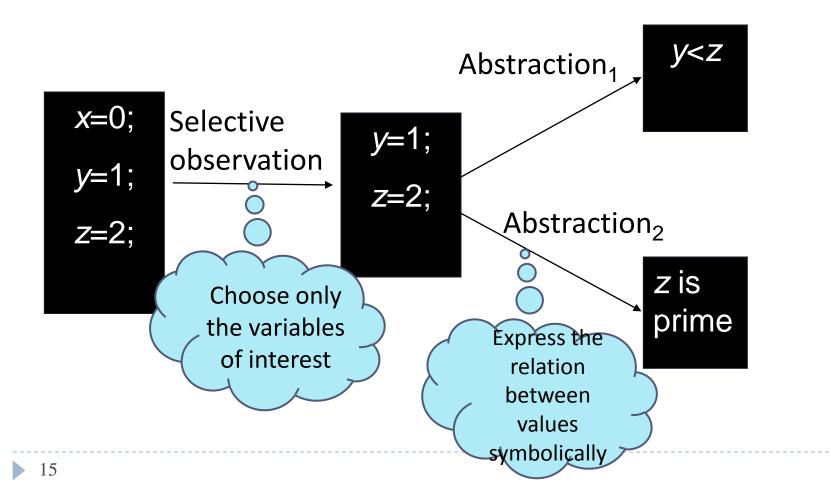
How it works in practice?

Describing States

For abstracting states we use program variables and 1st order predicate logic...

- ▶ true, false, ¬, \land , \lor , \forall , \exists , →
- extended with equality "=" and interpreted predicate symbols and function symbols:
 - ▶ *x* = *y*
 - even (x)
 - ▶ odd (x)
 - prime (x)
 - □ etc

Example of state abstraction steps



Representing States

- Valuation of a state
 - A mapping: V → V from observable state variables V to their value domain V,
- Symbolic state = set of explicit states
 - the set of states is described by a 1st order logic formula
 - Instead of enumerating explicit states we use a logic formula describing the set S₀

• Example:
$$S_0 \equiv (x = 1) \land (y > 2)$$

Representing a transition

- Transition abstracts a program command (or circuit)
 - Distinguish two sets of variables' values:
 V and V' for variable valuation in pre- and post-state of the transition, respectively
- Transition relation is a relation between V and V'
 - relation is expressable as a set of pairs of states
 - represented as a logic formula on V, V' with "=",
- Example:
 - Relation x' = x+1 describes the effect of program statement x:=x+1

From Logic Relation to Kripke Structure

Rules

- S (statespace) is the set of all valuations for V;
- S_0 is the set of all valuations that satisfy S_0 (a logic formula)
- If *s* and *s*' are two states, s.t. $(s,s') \in R(s,s')$ then the pair (s,s') is a transition in KS;
- L is defined so that L(s) is the subset of all atomic propositions true in s.

Example

(1,1)
$$x := (x+y) \mod 2$$
 (0,1)

- $S_0 \equiv x = 1 \land y = 1$
- R ≡ x'= (x+y) mod 2
- ▶ *S* = B × B, where B = {0,1}
- $S_0 = \{(1,1)\}$
- $\blacktriangleright \ R = \{((1,1), (0,1)), ((0,1), (1,1))\}$
- ▶ L(1,1) = {x=1, y=1}
- $L(0,1) = \{x=0, y=1\}$

Abstracting parallel programs to KS

A parallel program contains sequential processes

- with synchronization primitives: wait, lock and unlock
- processes may share variables
- no assumption about the speed and execution order of these processes
- Program commands are labeled by $I_1 \dots I_n$
- We use C(I₁, P, I₂) to denote the logic relation of the transition that represents program P.

How to compute transition relation for sequential program fragments?

Base case: atomic statements:

- skip % has no effect on data variables
- ► assignment: x := e

Let *C* describe valuations before and after executing *P*: x := e

$$C(I_1, x := e, I_2) \equiv pc = I_1 \land pc' = I_2 \land x' = e \land same(V \setminus \{x\})$$

same(Y) means
$$y' = y$$
, for all $y \in Y$.

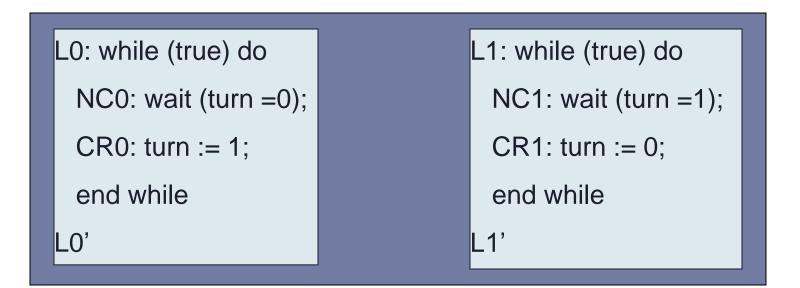
How to compute transition relation for sequential program fragments? (2)

- Sequential composition
 C(I₀, P1 ; I: P2, I₁) = C(I₀, P1, I) ∨ C(I, P2, I₁)
- C(*I*, if b then I_1 : P1 else I_2 : P2 end if, *I*) is the disjunction of:

part for
$$P = I \land pc' = I_1 \land b \land same(V)$$

 $pc = I \land pc' = I_2 \land \neg b \land same(V)$
 $C (I_1, P1, I')$
 $C (I_2, P2, I')$
Body part

Example: concurrent while-loops sharing a variable "turn"



- identify variables, including program counters
- compute set of states and set of initial states
- compute transitions

Example (continued I)

```
L0: while (true) do

NC0: wait (turn =0);

CR0: turn := 1;

end while

L0'

L1: while (true) do

NC1: wait (turn =1);

CR1: turn := 0;

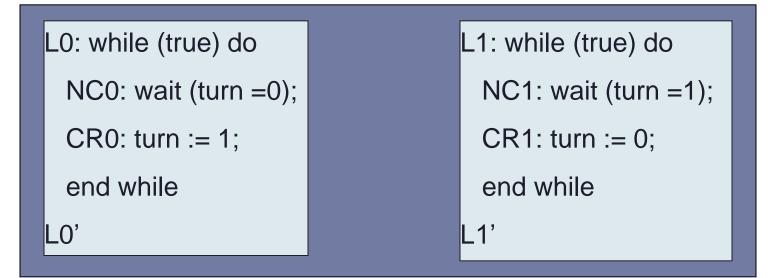
end while

L1'
```

Identify variables, including program counters:

- *V* = { pc_0, pc_1, turn}
- domain of pc_0 is L0, NC0, CR0, L0'
- domain of **turn** is {0,1}

Example (continued II)



- Compute set of states and set of initial states
 - S= {(L0, L1, 1), (L0, L1, 0), (L0, NC1, 0), (L0, NC1, 1) ...}
 - S₀ = {(L0, L1, 0), (L0, L1, 1)}

Example (continued III)

	m: cobegin	
L0: while (true) do		
NC0: wait (turn =0);		
CR0: turn := 1;		
end while		
LO'		
	m': coend	

- Compute transition relation separately & then compose them together:
 - For global program counter $dom(pc) = \{m, m', \bot\}$
 - \perp represents that one of local pc is taking effect.

Example (continued IV)

	m: cobegin	
L0: while (true) do		L1: while (true) do
NC0: wait (turn =0);		NC1: wait (turn =1);
CR0: turn := 1;		CR1: turn := 0;
end while		end while
LO'		L1'
	m': coend	

Transition relations of the composition:
 C(L0, P0, L0') = turn'=turn+1 ∧ same(V \ V0) ∧ same(PC \ PC0)

Summary

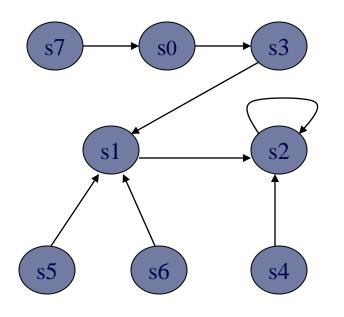
- Concept of MC (at very high level):
 - An automatic procedure that verifies temporal and state properties
 - Requires input:
 - a state transition system
 - a temporal property
- State transition system Kripke structure (KS):
 - KS structure is our (teaching) language
 - KS models reactive systems
- An example demonstrated how a concurrent program is translated to KS:
 - Concurrent program to logic relations
 - Logic relations to *KS*.

Next lecture

- Temporal properties
 - CTL*, CTL and LTL
 - Their semantics
- CTL model checking on a Kripke structure

Exercise

• Give your definition of APs p, q, r.



$$L(s0) = \{\neg p, \neg q, \neg r\}$$

$$L(s1) = \{\neg p, \neg q, r\}$$

$$L(s2) = \{\neg p, q, \neg r\}$$

$$L(s3) = \{\neg p, q, r\}$$

$$L(s4) = \{p, \neg q, \neg r\}$$

$$L(s5) = \{p, \neg q, r\}$$

$$L(s6) = \{p, q, \gamma r\}$$

$$L(s7) = \{p, q, r\}$$