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Definition of Thread

● A thread is a unit of execution, associated with 
a process, with its own thread ID, stack, stack 
pointer, program counter, condition codes, and 
general-purpose registers.

● Multiple threads associated with a process run 
concurrently in the context of that process, 
sharing its code, data, heap, shared libraries, 
signal handlers, and open files.



  

Process vs Thread 

● Process – unit of resource ownership:

● a virtual address space which holds the process image. 
● protected access to processors, other processes, files, and 

I/O resources. 

● Thread – unit of dispatching:

● Has an execution state (running, ready, etc.) 
● Saves thread context when not running 
● Has an execution stack and some per-thread static storage 

for local variables 
● Has access to the memory address space and resources of 

its process



  

Benefits of using threads instead of processes

● Properly implemented, threads take:
● Less time to create a new thread than a process, because the newly 

created thread uses the current process address space. 

● Less time to terminate a thread than a process. 

● Less time to switch between two threads within the same process, partly 
because the newly created thread uses the current process address 
space. 

● Less communication overheads -- communicating between the threads 
of one process is simple  the threads share almost everything: address 
space, in particular. So, data produced by one thread is immediately 
available to all the other threads.



  

Benefits of multi-threading
● Improve application responsiveness
● Use multiprocessors more efficiently
● Improve program structure
● Use fewer system resources



  

Problems of multi-threading

● Data corruption (discussed later)
● Avoiding former needs discipline from a 

programmer



  

Thread Libraries

● Provide interface for thread manipulation:

● creating and destroying threads 

● passing messages and data between threads 

● scheduling thread execution 

● saving and restoring thread contexts 

● Are not a part of C standard

● Example libraries:

● POSIX threads

● SOLARIS threads



  

Thread Control

• Pthreads defines about 60 functions that 
allow C programs to create, kill, and reap 
threads, to share data safely with peer 
threads, and to notify peers about changes 
in the system state.

• However, most threaded programs use only 
a small subset of the functions defined in the 
interface.



  

Threaded Hello.c
#include <pthread.h>
#include <sdtio.h>
void *thread(void *vargp);

int main() {
pthread_t tid;

pthread_create(&tid, NULL, thread, NULL);
pthread_join(tid, NULL);
exit(0);

}

/* thread routine */
void *thread(void *vargp) {

printf("Hello, world!\n");
return NULL;

}



  

Creating threads

#include <pthread.h>

typedef void *(func)(void *);

int pthread_create(pthread_t *tid, 
pthread_attr_t *attr, func *f, 
void *arg);

returns: 0 if OK, non-zero on error

pthread_t pthread_self(void);



  

Terminating Threads
A thread terminates in one of the following ways:

–  The thread terminates implicitly when its top-level thread 
routine returns.

–  The thread terminates explicitly by calling the 
pthread_exit() function, which returns a pointer to the return 
value thread return. If the main thread calls pthread_exit, it 
waits for all other peer threads to terminate, and then 
terminates the main thread and the entire process with a 
return value of thread return.

–  Some peer thread calls the Unix exit() function, which 
terminates the process and all threads associate with the 
process.

–  Another peer thread terminates the current thread by calling 
the pthread_cancel() function with the ID of the current 
thread.

int pthread_exit(void *thread_return);
– Returns 0 if OK, nonzero on error

int pthread_cancel(pthread_t tid);
– Returns 0 if OK, nonzero on error



  

Reaping terminated threads

● Threads wait for other threads to terminate by 
calling the pthread_join function.

● int pthread_join(pthread_t tid, void 
**thread_return);

● The pthread_join function blocks until thread tid 
terminates,

● There is no way to instruct pthread_join to wait 
for an arbitrary thread to terminate.



  

Detaching threads

• At any point in time, a thread is joinable or detached. A joinable thread can 
be reaped and killed by other threads. Its memory resources (such as the 
stack) are not freed until it is reaped by another thread. 

• In contrast, a detached thread cannot be reaped or killed by other threads. 
Its memory resources are freed automatically by the system when it 
terminates.

• By default, threads are created joinable. In order to avoid memory leaks, 
each joinable thread should either be explicitly reaped by another thread, or 
detached by a call to the pthread_detach function.

• int pthread_detach(pthread t tid);
• Note:

pthread_detach(pthread_self()) // used to detach self
• Generally threads are detached



  

Shared variables

• Sharing variables is one of the most attractive features 
of threads

• It  is also most dangerous for creating bugs that are 
difficult to detect

• Global variables are shared
• Local automatic variables (stack) are not shared but 

are not protected either (share common virtual address 
space)

• Local static variables are shared as globals
• Generally: a variable  is shared if and only if one of its 

instances is referenced by more than one thread.



  

Incorrect sharing
#include <pthread.h>
#define NITERS 10000000
void *count(void *arg);
/* shared variable */
unsigned int cnt = 0;
int main() {
   pthread_t tid1, tid2;
   pthread_create(&tid1, NULL, count, NULL);
   pthread_create(&tid2, NULL, count, NULL);
   pthread_join(tid1, NULL);
   pthread_join(tid2, NULL);
   if (cnt != (unsigned)NITERS*2)
     printf("BOOM! cnt=%d\n", cnt);
   else
     printf("OK cnt=%d\n", cnt);
 }
void *count(void *arg)  { // thread routine
 int i;
 for (i=0; i<NITERS; i++)
     cnt++;
 return NULL; }



  

Sharing problem

Code for thread:

for (i=0; i<NITERS; i++)

    ctr++;
Is actually:

     LOAD ctr
     INCREMENT ctr
     STORE ctr



  

Mutexes
● A mutex is synchronization variable that is 

used to protect the access to shared 
variables. There are three basic operations 
defined on a mutex.
● Init, Lock, Unlock

● int pthread_mutex_init(pthread_mutex_t 
*mutex, pthread_mutexattr_t *attr);

● Compile time initialization
pthread_mutex_t mutex =     

PTHREAD_MUTEX_INITIALIZER;



  

Mutex lock and unlock
• int pthread_mutex_lock(pthread_mutex_t *mutex);
• int pthread_mutex_unlock(pthread_mutex_t 

*mutex);
● These are atomic operations
● Locking is also called aquiring the mutex, 

unlocking is called releaseing
● At any moment only one thread can hold a 

mutex



  

Using mutexes

// general code
pthread_mutex_t mutex;
pthread_mutex_init(&mutex, NULL);

// thread code

pthread_mutex_lock(&mutex);

// critical section

// access shared variables

pthread_mutex_unlock(&mutex);



  

Correct thread routine

 /* thread routine */
void *count(void *arg)
{
  int i;

  for (i=0; i<NITERS; i++) {
  pthread_mutex_lock(&mutex);
  cnt++;
  pthread_mutex_unlock(&mutex);
}
return NULL;



  

Deadlocks

● Locking order might cause issues when threads 
hold mutexes mutually
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