

Real-time Operating Systems and
Systems Programming

Introduction
Lecture 1

About the Course

● Lectures by: Jaagup Irve
jaagup.irve@ttu.ee

● Webpage:
http://www.lambda.ee/iti8510/

Expectations

● Familiarity with C programming language
● There will be a test on Oct 5

● Some familiarity with command-line helps

Te olete C loengus
09:22:49 AM

Test

 Oct 5.
 Devious puzzles
 Everything you can do without libraries

– C keywords

– Precedence

– Pointers and arrays
 Goal is to brainwash you

– Tricks your brain into remembering things

– Gives extra points for the exam
 Feedback on general C proficiency

Te olete C loengus
09:22:49 AM

Extremely nasty C (test is
easier)

typedef unsigned char B;char*x[]={

#include "dict.h"

0};typedef struct L{B*s;struct L*n;}L;

L*h[128],*l[128],*s[128],Z[sizeof x/sizeof*x],*F=Z;int c[256],m,a=1;

int k(B*q){int g=0;B*p=q;while(*p)g|=!c[*p++]--;return g-1&p-q;}

void u(B*p){while(*p)c[*p++]++;}

void S(int N,int r,int t,L*W){L*w;int i,n;

 for(n=r<N?r:N;n>0;n--)for(w=n==N?W:h[n];s[t]=w;u(w->s),w=w->n)if(k(w->s))

 if(n==r){if(t==m-1)for(i=a=0;i<=t;i++)printf("%s%c",s[i]->s,i<t?' ':'\n');}

 else if(t<m-1)S(n,r-n,t+1,s[t]=w);}

int main(int C,B**A){int i=0,g,n=0;B*p;while(--C)for(p=*++A;n<127&&*p;)c[*p++]++,n+
+;

 for(;p=x[i++];u(p))if(g=k(p))(l[g]=*(l[g]?&l[g]->n:&h[g])=F++)->s=p;

 while(++m<128)S(127,n,0,h[127]);

 return a;}

- Peter Klausler, IOCCC 2006 (http://www.ioccc.org/)

Grades

● Programming project(s) (40%)
Small practice tasks (show them!)
At least one larger program

● Exam (60%)
Terminology, some functions, code reading,

coding on paper

Topics

● Hardware IO; interrupts
● Stack, heap
● Signals, threads, processes, mutexes
● Scheduling
● Standard IO, file, dir management
● Programming an Operating System
● Networking
● Optimizing, security, Localization

Te olete C loengus
09:22:49 AM

C keywords

• Types
– char double enum float int long short struct union
void

• Parameters to variables
– auto const extern register signed static unsigned
volatile

• Flow control
– break case continue default do else for goto if return
switch while

• Operators
– sizeof, typeof

Te olete C loengus
09:22:49 AM

Operator precedence
() [] -> .
! ~ ++ -- + - * & (type) sizeof
* / %
+ -
<< >>
< <= > >=
== !=
&
^
|
&&
||
? :
= += -= *= /= %= &= ^= |= <<= >>=
,

>>
<<
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
<<
<<
>>

Te olete C loengus
09:22:49 AM

Maths and Logic
 (things I want done before maths)

* / % (maths)
+ -
 (things between maths & logic)

&
^
| (logic)
&&
||

 (things I want after logic)

>>
>>

>>
>>
>>
>>
>>

Te olete C loengus
09:22:49 AM

Really important things
() [] -> . {language constructs}
! ~ ++ -- + - * & (type) sizeof {unary}
* / % {maths
+ - }

& {logic
^
|
&&
|| }

>>
<<
>>
>>

>>
>>
>>
>>
>>

Te olete C loengus
09:22:49 AM

What goes between maths and
logic?

() [] -> . {language constructs}
! ~ ++ -- + - * & (type) sizeof {unary}
* / % {maths
+ - }

< <= > >= {comparison}
== != {equality}
& {logic
^
|
&&
|| }

>>
<<
>>
>>

>>
>>
>>
>>
>>
>>
>>

Te olete C loengus
09:22:49 AM

Finally
() [] -> .
! ~ ++ -- + - * & (type) sizeof
* / %
+ -
<< >>
< <= > >=
== !=
&
^
|
&&
||
? :
= += -= *= /= %= &= ^= |= <<= >>=
,

>>
<<
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
<<
<<
>>

Variables

● Name to an address.
● Type says amount of memory to reserve
● Must be declared before use

Te olete C loengus
09:22:49 AM

Some reading

 Main books:
– Brian W. Kernighan, Dennis M. Ritchie The C

Programming Language, Second Edition,
Pretince Hall 1988

– Randal E. Bryant and David R. O'Hallaron
Computer Systems: A Programmer's
Perspective (CS:APP), Prentice Hall, 2003

● Note: also has a newer edition

Real-Time Systems

● Hardware or software which has a time
constraint for reactions

● For our purposes, also embedded systems
● What would be the difference?

Characteristics

● Specified limit on
system response
latency

● Event-driven
scheduling

● Low-level
programming

● Software coupled to
special hardware

● Volatile Data
● Multi-tasking

implementation
● Unpredictable

environment
● Runs continously
● Life-critical

applications

Example: Anti-lock brakes

● Must prevent locking of wheels while braking
● Inputs: Brake pedal, Wheel rotation
● Actuators: Brakes

Human brain?

● "The human brain runs a Real-Time Operating
System. Conscious thought is a low priority
task."

- Bob Cross on c2 wiki
● Real-time system or not?

Pathfinder Rover

● Initially successful: July 4, 1997
● Software resets start

● Serious data losses
● Problem: bus overloaded with data
● Low priority data collection locks the bus, medium

priority tasks interrupt it
● High priority data distribution task fails: cannot get

bus
● Scheduler detects pending high-priority task &

resets

Solutions

● Priority inversion: high priority task delayed in a
critical section by low priority tasks

● Solution was priority inheritance: low priority
tasks entering critical section will inherit the
highest priority of waiting tasks

● Solved the Pathfinder reset problem

More examples

● Microwave, dishwasher, toaster
● Cars: cruise control, drive-by-wire
● Computers: peripheral devices, applications
● Planes: auto-pilot, stability, fly-by-wire

Terminology

● System: black box with n inputs and m outputs
● Response time: time between presentation of a

set of inputs and the appearance of the
corresponding outputs

● Events: Changes of state which cause changes
in flow-of-control of a program
● Synchronous: events occur at predictable times
● Asynchronous: events interrupt flow-of-control

State vs Event based

● State based:
● System constantly reads system inputs and reacts

to their combination

● Event based
● System is in standby and events “wake” it to make it

work

Deterministic RTS

● A deterministic RTS: you can determine a
unique set of outputs and next state from a
given set of possible states and inputs.

Real time Correctness

● Correctness depends on result and the time of
delivery.

● Soft – missing some deadlines not a problem
● Firm – missing deadline: result worthless, but

not a problem
● Hard – missing a deadline makes result

worthless and is a problem

Misconceptions

● “Really fast” is real-time.
● Might not be predictable enough

● Interactive is real-time.
● Again: interactive optimized for “average” case.

● Real-time = “Bug free”:
● Often the case, but bug free is wider concept

Static Predictability

● RT system: satisfying time constraints
● Assumptions about workload and sufficient

resources
● Certified at design time, that all constraints will be

met

● For static systems, 100% guarantees can be
given at design time
● Requires immutable workload and system

resources
● System must be re-certified on any change

Dynamic Predictability

● Dynamic systems: not statically defined
● Systems configurations might change
● Workload might change

● Dynamic predictability
● Under appropriate assumptions (sufficient

resources)
● Tasks will satisfy time contstraints

Latency minimization

● Latency is the time between an event and the
system's reaction to it.

● We want to minimize latencies
● For different applications, different latencies are

required.
● 10 ms might be barely enough (probably a

dedicated system)
● 500 ms might be enough (we could use an external

kernel)

Multiple Requirements

● Real-time
● Power constraints
● Size constraints
● Cost limits
● Security requirements
● Fault tolerance

● Often conflicting

New Environments

● Ubiquitous Computing
● Computers become invisible, so embedded and

natural that we use them without thinking of using
them.

● Autonomous Computing
● Self-configurable
● Self-adapting
● Optimizing
● Self-healing

End of buzzwords

● Lab: Linux environment and command-line and
hello world

● No points for the first one, just to get to know if
the environment still works.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

