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About the Course

● Lectures by: Jaagup Irve
jaagup.irve@ttu.ee

● Webpage:
http://www.lambda.ee/iti8510/



  

Expectations

● Familiarity with C programming language
● There will be a test on Oct 5

● Some familiarity with command-line helps
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Test

 Oct 5.
 Devious puzzles
 Everything you can do without libraries

– C keywords

– Precedence

– Pointers and arrays
 Goal is to brainwash you

– Tricks your brain into remembering things

– Gives extra points for the exam
 Feedback on general C proficiency
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Extremely nasty C (test is 
easier)

typedef unsigned char B;char*x[]={

#include "dict.h"

0};typedef struct L{B*s;struct L*n;}L;

L*h[128],*l[128],*s[128],Z[sizeof x/sizeof*x],*F=Z;int c[256],m,a=1;

int k(B*q){int g=0;B*p=q;while(*p)g|=!c[*p++]--;return g-1&p-q;}

void u(B*p){while(*p)c[*p++]++;}

void S(int N,int r,int t,L*W){L*w;int i,n;

 for(n=r<N?r:N;n>0;n--)for(w=n==N?W:h[n];s[t]=w;u(w->s),w=w->n)if(k(w->s))

  if(n==r){if(t==m-1)for(i=a=0;i<=t;i++)printf("%s%c",s[i]->s,i<t?' ':'\n');}

  else if(t<m-1)S(n,r-n,t+1,s[t]=w);}

int main(int C,B**A){int i=0,g,n=0;B*p;while(--C)for(p=*++A;n<127&&*p;)c[*p++]++,n+
+;

 for(;p=x[i++];u(p))if(g=k(p))(l[g]=*(l[g]?&l[g]->n:&h[g])=F++)->s=p;

 while(++m<128)S(127,n,0,h[127]);

 return a;}

- Peter Klausler, IOCCC 2006 (http://www.ioccc.org/)



  

Grades

● Programming project(s) (40%)
Small practice tasks (show them!)
At least one larger program

● Exam (60%)
Terminology, some functions, code reading, 

coding on paper



  

Topics

● Hardware IO; interrupts
● Stack, heap
● Signals, threads, processes, mutexes
● Scheduling
● Standard IO, file, dir management
● Programming an Operating System
● Networking
● Optimizing, security, Localization



Te olete C loengus
09:22:49 AM

C keywords

• Types
– char double enum float int long short struct union 
void

• Parameters to variables
– auto const extern register signed static unsigned 
volatile

• Flow control
– break case continue default do else for goto if return 
switch while

• Operators
– sizeof, typeof
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Operator precedence
()   []  ->  .
!  ~  ++  -- + - * & (type) sizeof
*  /  %
+  -
<<  >>
<  <=  >  >=
==  !=
&
^
|
&&
||
? : 
=  +=  -=  *=  /=  %=  &=  ^=  |=  <<=  >>=
,

>>
<<
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
<<
<<
>>
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Maths and Logic
           (things I want done before maths)

*  /  %    (maths)
+  -
           (things between maths & logic)

&
^
|          (logic)
&&
||

           (things I want after logic)

>>
>>

>>
>>
>>
>>
>>
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Really important things
()   []  ->  .              {language constructs}
!  ~  ++  -- + - * & (type) sizeof  {unary}
*  /  %                           {maths
+  -                              }

&                                 {logic
^
|
&&
||                                }

>>
<<
>>
>>

>>
>>
>>
>>
>>
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What goes between maths and 
logic?

()   []  ->  .               {language constructs}
!  ~  ++  -- + - * & (type) sizeof  {unary}
*  /  %                           {maths
+  -                              }

<  <=  >  >=                      {comparison}
== !=                             {equality}
&                                 {logic
^
|
&&
||                                }

>>
<<
>>
>>

>>
>>
>>
>>
>>
>>
>>
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Finally
()   []  ->  .
!  ~  ++  -- + - * & (type) sizeof
*  /  %
+  -
<<  >>
<  <=  >  >=
==  !=
&
^
|
&&
||
? : 
=  +=  -=  *=  /=  %=  &=  ^=  |=  <<=  >>=
,

>>
<<
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
<<
<<
>>



  

Variables

● Name to an address.
● Type says amount of memory to reserve
● Must be declared before use
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Some reading

 Main books:
– Brian W. Kernighan, Dennis M. Ritchie The C 

Programming Language, Second Edition, 
Pretince Hall 1988

– Randal E. Bryant and David R. O'Hallaron 
Computer Systems: A Programmer's 
Perspective (CS:APP),  Prentice Hall, 2003

● Note: also has a newer edition



  

Real-Time Systems

● Hardware or software which has a time 
constraint for reactions

● For our purposes, also embedded systems
● What would be the difference?



  

Characteristics

● Specified limit on 
system response 
latency

● Event-driven 
scheduling

● Low-level 
programming

● Software coupled to 
special hardware

● Volatile Data
● Multi-tasking 

implementation
● Unpredictable 

environment
● Runs continously 
● Life-critical 

applications



  

Example: Anti-lock brakes

● Must prevent locking of wheels while braking
● Inputs: Brake pedal, Wheel rotation
● Actuators: Brakes



  

Human brain?

● "The human brain runs a Real-Time Operating 
System. Conscious thought is a low priority 
task."

- Bob Cross on c2 wiki
● Real-time system or not?



  

Pathfinder Rover

● Initially successful: July 4, 1997
● Software resets start

● Serious data losses
● Problem: bus overloaded with data
● Low priority data collection locks the bus, medium 

priority tasks interrupt it
● High priority data distribution task fails: cannot get 

bus
● Scheduler detects pending high-priority task & 

resets



  

Solutions

● Priority inversion: high priority task delayed in a 
critical section by low priority tasks

● Solution was priority inheritance: low priority 
tasks entering critical section will inherit the 
highest priority of waiting tasks

● Solved the Pathfinder reset problem



  

More examples

● Microwave, dishwasher, toaster
● Cars: cruise control, drive-by-wire
● Computers: peripheral devices, applications
● Planes: auto-pilot, stability, fly-by-wire



  

Terminology

● System: black box with n inputs and m outputs
● Response time: time between presentation of a 

set of inputs and the appearance of the 
corresponding outputs

● Events: Changes of state which cause changes 
in flow-of-control of a program
● Synchronous: events occur at predictable times
● Asynchronous: events interrupt flow-of-control



  

State vs Event based

● State based:
● System constantly reads system inputs and reacts 

to their combination

● Event based
● System is in standby and events “wake” it to make it 

work



  

Deterministic RTS

● A deterministic RTS: you can determine a 
unique set of outputs and next state from a 
given set of possible states and inputs.



  

Real time Correctness

● Correctness depends on result and the time of 
delivery.

● Soft – missing some deadlines not a problem
● Firm – missing deadline: result worthless, but 

not a problem
● Hard – missing a deadline makes result 

worthless and is a problem



  

Misconceptions

● “Really fast” is real-time.
● Might not be predictable enough

● Interactive is real-time.
● Again: interactive optimized for “average” case.

● Real-time = “Bug free”:
● Often the case, but bug free is wider concept



  

Static Predictability

● RT system: satisfying time constraints
● Assumptions about workload and sufficient 

resources
● Certified at design time, that all constraints will be 

met

● For static systems, 100% guarantees can be 
given at design time
● Requires immutable workload and system 

resources
● System must be re-certified on any change



  

Dynamic Predictability

● Dynamic systems: not statically defined
● Systems configurations might change
● Workload might change

● Dynamic predictability
● Under appropriate assumptions (sufficient 

resources)
● Tasks will satisfy time contstraints



  

Latency minimization

● Latency is the time between an event and the 
system's reaction to it.

● We want to minimize latencies
● For different applications, different latencies are 

required.
● 10 ms might be barely enough (probably a 

dedicated system)
● 500 ms might be enough (we could use an external 

kernel)



  

Multiple Requirements

● Real-time
● Power constraints
● Size constraints
● Cost limits
● Security requirements
● Fault tolerance

● Often conflicting



  

New Environments

● Ubiquitous Computing
● Computers become invisible, so embedded and 

natural that we use them without thinking of using 
them.

● Autonomous Computing
● Self-configurable
● Self-adapting
● Optimizing
● Self-healing



  

End of buzzwords

● Lab: Linux environment and command-line and 
hello world

● No points for the first one, just to get to know if 
the environment still works.
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