

Real-time Operating Systems and
Systems Programming

Threads

Definition of Thread

● A thread is a unit of execution, associated with
a process, with its own thread ID, stack, stack
pointer, program counter, condition codes, and
general-purpose registers.

● Multiple threads associated with a process run
concurrently in the context of that process,
sharing its code, data, heap, shared libraries,
signal handlers, and open files.

Process vs Thread

● Process – unit of resource ownership:

● a virtual address space which holds the process image.
● protected access to processors, other processes, files, and

I/O resources.

● Thread – unit of dispatching:

● Has an execution state (running, ready, etc.)
● Saves thread context when not running
● Has an execution stack and some per-thread static storage

for local variables
● Has access to the memory address space and resources of

its process

Benefits of using threads instead of processes

● Properly implemented, threads take:
● Less time to create a new thread than a process, because the newly

created thread uses the current process address space.

● Less time to terminate a thread than a process.

● Less time to switch between two threads within the same process, partly
because the newly created thread uses the current process address
space.

● Less communication overheads -- communicating between the threads
of one process is simple the threads share almost everything: address
space, in particular. So, data produced by one thread is immediately
available to all the other threads.

Benefits of multi-threading
● Improve application responsiveness
● Use multiprocessors more efficiently
● Improve program structure
● Use fewer system resources

Problems of multi-threading

● Data corruption (discussed later)
● Avoiding former needs discipline from a

programmer

Thread Libraries

● Provide interface for thread manipulation:

● creating and destroying threads

● passing messages and data between threads

● scheduling thread execution

● saving and restoring thread contexts

● Are not a part of C standard

● Example libraries:

● POSIX threads

● SOLARIS threads

Thread Control

• Pthreads defines about 60 functions that
allow C programs to create, kill, and reap
threads, to share data safely with peer
threads, and to notify peers about changes
in the system state.

• However, most threaded programs use only
a small subset of the functions defined in the
interface.

Threaded Hello.c
#include <pthread.h>
#include <sdtio.h>
void *thread(void *vargp);

int main() {
pthread_t tid;

pthread_create(&tid, NULL, thread, NULL);
pthread_join(tid, NULL);
exit(0);

}

/* thread routine */
void *thread(void *vargp) {

printf("Hello, world!\n");
return NULL;

}

Creating threads

#include <pthread.h>

typedef void *(func)(void *);

int pthread_create(pthread_t *tid,
pthread_attr_t *attr, func *f,
void *arg);

returns: 0 if OK, non-zero on error

pthread_t pthread_self(void);

Terminating Threads
A thread terminates in one of the following ways:

– The thread terminates implicitly when its top-level thread
routine returns.

– The thread terminates explicitly by calling the
pthread_exit() function, which returns a pointer to the return
value thread return. If the main thread calls pthread_exit, it
waits for all other peer threads to terminate, and then
terminates the main thread and the entire process with a
return value of thread return.

– Some peer thread calls the Unix exit() function, which
terminates the process and all threads associate with the
process.

– Another peer thread terminates the current thread by calling
the pthread_cancel() function with the ID of the current
thread.

int pthread_exit(void *thread_return);
– Returns 0 if OK, nonzero on error

int pthread_cancel(pthread_t tid);
– Returns 0 if OK, nonzero on error

Reaping terminated threads

● Threads wait for other threads to terminate by
calling the pthread_join function.

● int pthread_join(pthread_t tid, void
**thread_return);

● The pthread_join function blocks until thread tid
terminates,

● There is no way to instruct pthread_join to wait
for an arbitrary thread to terminate.

Detaching threads

• At any point in time, a thread is joinable or detached. A joinable thread can
be reaped and killed by other threads. Its memory resources (such as the
stack) are not freed until it is reaped by another thread.

• In contrast, a detached thread cannot be reaped or killed by other threads.
Its memory resources are freed automatically by the system when it
terminates.

• By default, threads are created joinable. In order to avoid memory leaks,
each joinable thread should either be explicitly reaped by another thread, or
detached by a call to the pthread_detach function.

• int pthread_detach(pthread t tid);
• Note:

pthread_detach(pthread_self()) // used to detach self
• Generally threads are detached

Shared variables

• Sharing variables is one of the most attractive features
of threads

• It is also most dangerous for creating bugs that are
difficult to detect

• Global variables are shared
• Local automatic variables (stack) are not shared but

are not protected either (share common virtual address
space)

• Local static variables are shared as globals
• Generally: a variable is shared if and only if one of its

instances is referenced by more than one thread.

Incorrect sharing
#include <pthread.h>
#define NITERS 10000000
void *count(void *arg);
/* shared variable */
unsigned int cnt = 0;
int main() {
 pthread_t tid1, tid2;
 pthread_create(&tid1, NULL, count, NULL);
 pthread_create(&tid2, NULL, count, NULL);
 pthread_join(tid1, NULL);
 pthread_join(tid2, NULL);
 if (cnt != (unsigned)NITERS*2)
 printf("BOOM! cnt=%d\n", cnt);
 else
 printf("OK cnt=%d\n", cnt);
 }
void *count(void *arg) { // thread routine
 int i;
 for (i=0; i<NITERS; i++)
 cnt++;
 return NULL; }

Sharing problem

Code for thread:

for (i=0; i<NITERS; i++)

 ctr++;
Is actually:

 LOAD ctr
 INCREMENT ctr
 STORE ctr

Mutexes
● A mutex is synchronization variable that is

used to protect the access to shared
variables. There are three basic operations
defined on a mutex.
● Init, Lock, Unlock

● int pthread_mutex_init(pthread_mutex_t
*mutex, pthread_mutexattr_t *attr);

● Compile time initialization
pthread_mutex_t mutex =

PTHREAD_MUTEX_INITIALIZER;

Mutex lock and unlock
• int pthread_mutex_lock(pthread_mutex_t *mutex);
• int pthread_mutex_unlock(pthread_mutex_t

*mutex);
● These are atomic operations
● Locking is also called aquiring the mutex,

unlocking is called releaseing
● At any moment only one thread can hold a

mutex

Using mutexes

// general code
pthread_mutex_t mutex;
pthread_mutex_init(&mutex, NULL);

// thread code

pthread_mutex_lock(&mutex);

// critical section

// access shared variables

pthread_mutex_unlock(&mutex);

Correct thread routine

 /* thread routine */
void *count(void *arg)
{
 int i;

 for (i=0; i<NITERS; i++) {
 pthread_mutex_lock(&mutex);
 cnt++;
 pthread_mutex_unlock(&mutex);
}
return NULL;

Deadlocks

● Locking order might cause issues when threads
hold mutexes mutually

	Slide 1
	Definition of Thread
	Process vs Thread
	Benefits of using threads instead of processes
	Benefits of multi-threading
	Slide 6
	Thread Libraries
	Thread Control
	Threaded Hello.c
	Creating threads
	Terminating Threads
	Reaping terminated threads
	Detaching threads
	Shared variables
	Incorrect sharing
	Sharing problem
	Mutexes
	Mutex lock and unlock
	Using mutexes
	Correct thread routine
	Slide 21

