

Real-time Operating Systems and
Systems Programming

Security

Te olete C loengus
11:41:39

Security Topics

 General issues
 Specific issues
 C specific issues

Te olete C loengus
11:41:39

But First!

 http://www.youtube.com/watch?feature
=player_embedded&v=p5T81yHkHtI

http://www.youtube.com/watch?feature=player_embedded&v=p5T81yHkHtI
http://www.youtube.com/watch?feature=player_embedded&v=p5T81yHkHtI

Te olete C loengus
11:41:39

Sources

 http://www.dwheeler.com/secure-
programs/

 http://www.ibm.com/developerworks/libra
ry/s-buffer-defend.html

 https://www.securecoding.cert.org/conflue
nce/display/seccode/CERT+C+Coding+St
andard

Te olete C loengus
11:41:39

Posssible problems

 Disruption of work
 Data integrity
 Privilege escalation
 Data leakage

(CIA triad: confidentiality, integrity,
availability)

Te olete C loengus
11:41:39

What Causes Security Issues?

 Lack of skills
 Insecure tools (C language)
 Multi-user and parallel processes are

difficult to predict and think about
 Lazyness
 Time/Money
 There is lack of good programmers
 User is not interested

... ?

Te olete C loengus
11:41:39

Paranoia

 Being paranoid is the foundation of
security

 Think like an attacker
bodyguard analogy

 Presume that the attacker has the ability
to exploit any weaknesses

 The defender must always be defensive,
the attacker only needs one successful
attack

First World War counter analogy here

Te olete C loengus
11:41:39

Guard your inputs

 Input is a lie!

Te olete C loengus
11:41:39

Command line

 Execve() lets the attacker add \0 chars
where not expected

 Setuid/setgid problems

Te olete C loengus
11:41:39

Environment variables

 You have full control over environment
 IFS variable (telling what character

separates the commands in a shell)
 When you use system() function, causes

problems
 Solution: purify the environment; use only

what needed
 (setuid/setgid problems)
 User gets to include random .so files

using LD_PRELOAD (and change it in
~/.environment variable)

Te olete C loengus
11:41:39

Filenames

 Sneaky . .. and / possibilities
 Buffer overrun with PATH_MAX problems
 ../*/../*/../*/../* denial of service when

using glob() function

Te olete C loengus
11:41:39

Passwords

 Problem: how to ask password so that it
does not reach the screen of the user.

 "Solution":

 Connects to "real" terminal /dev/tty , if
cannot, tries stdin ja stderr . Blocks INTR,
QUIT and SUSP commands in terminal.

 Terminal is flushed before and after
password is typed

#include <unistd.h>
char * = getpasswd(char * prompt)

Te olete C loengus
11:41:39

What does getpass() do?

 Prints the prompt
 Goes into noncanonical mode, turns off

echo, restores the terminal state after
function

 Due to lack of thread-safety, and
exclusion from POSIX standard, general
recommendation not to use it. Write
yourself (or find a working solution).

 For important applications the good
practice is to encrypt/hash the password
upon recieval and overwrite the original
buffer.

Te olete C loengus
11:41:39

Encryption: crypt()

 Encrypts using DES (broken) or MD5
(broken); Blowfish or SHA-256 / SHA-512:

 Belief that hash, once calculated cannot
be reversed in a reasonable time.

 salt: if two letters, chooses DES, if MD5,
start the string as 1 + 8 chars, which
end in $ or \0

 For Blowfish etc see manpage; you
change the id

char * crypt(constchar* key, const char* salt);

Te olete C loengus
11:41:39

Salt

 Salting prevents dictionary attacks using
rainbow tables.

 Output being salt + $ (when missing) +
hash

 Salt should be a random string when the
password is stored

 For checking the password, provide the
previous output of crypt() as the salt, and
compare salt to crypt() result. (As $ ends
salt, you can provide the whole result for
salt argument)

Te olete C loengus
11:41:39

Storage of passwords

 Hash is problematic; MD5 has over 9000
million tries per second

 You can calculate the hash repetitively on
existing hashes: try it 100 times to send
attacker away

 The attacker using a GPU will be thwarted
 Don't invent stuff, use the bcrypt library

Te olete C loengus
11:41:39

Stack smashing

 Canary
– Ubuntus uses by default, others not

 Address space randomization (ASLR)

Te olete C loengus
11:41:39

Standard library problems

 Mostly the lack of input length checks

Te olete C loengus
11:41:39

Malloc

 Double free() really problematic
 You can control the behaviour by setting

MALLOC_CHECK 2 environment variable
 After the release, use a macro to set the

pointer to NULL

Te olete C loengus
11:41:39

Non-negative values

 Use an unsigned type

Te olete C loengus
11:41:39

Compilation suggestion

 gcc -Wall -Wpointer-arith -Wstrict-
prototypes -O2

Te olete C loengus
11:41:39

Be paranoid!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

