
A Tutorial on OpenJML

Leonidas Tsiopoulos

ITI8610 Software Assurance Course, Module III, Lecture 5 - 20/12/2017



Precursors to OpenJML

• JML was first used in an early extended static checker (ESC/Java) and
was implemented in a set of tools called JML2.

• The second generation of ESC/Java, ESC/Java2, was made current with 
Java 1.4 and with the definition of JML.

• JML2 tools were based on hand-crafted compilers and the
maintenance and update effort was overwhelming as Java evolved.

• A new approach was needed, one that built on an existing compiler to
leverage further developments in that compiler but allowed easy 
integration with a Java IDE environment, and was readily 
maintainable and extensible.

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 
OpenJML



OpenJML - Introduction

• OpenJML is an implementation of JML tools built by extending the OpenJDK Java 
tool set.

• OpenJDK has a readily extensible architecture, although it is quite amenable to
extension since it has a complex compilation process with many components.

• The result is a suite of JML tools for Java 8 that provides static analysis, 
specification documentation, and runtime checking, an API that is used for other 
tools, uses Eclipse as an IDE, and can be extended for further research.

• The main drawback is that in an Eclipse-integrated system, the Eclipse compiler is 
used (as is) for Java compilation and the OpenJML/OpenJDK compiler is used as a 
back-end tool for handling JML and verification tasks.

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on OpenJML



OpenJML command-line tool

• Ability to parse and type-check current JML

• Ability to perform static verification checks using back-end SMT solvers

• Ability to explore counterexamples (models) provided by the solver

• Partial implementation of JML-aware documentation generation

• Proof of concept implementation of runtime assertion checking

• JMLUnitNG has used OpenJML to create a test generation tool, using OpenJML’s
API to access the parsed specifications

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 
OpenJML



Eclipse Java development environment OpenJML plug-in

• Ability to parse and type-check JML showing any errors or warnings as 
Eclipse problems, but with a custom icon and problem type

• Ability to check JML specifications against the Java code 
• Verification conditions are produced from the internal ASTs (Abstract Syntax 

Trees) and submitted to a back-end Satisfiability Modulo Theories (SMT) 
solver, and any proof failures are shown as Eclipse problems.

• Ability to use files with runtime checks along with Eclipse-compiled 
files

• Ability to explore specifications and counterexamples within the GUI

• Functionality integrated as Eclipse menus, commands, and editor 
windows

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 
OpenJML



Exploring Counterexamples from Static Checking

• The Eclipse GUI enables exploring counterexamples produced by 
failed static checking much more effectively than previous JML tools.

• The Eclipse GUI for OpenJML interprets the counterexample 
information and relates it directly to the program as seen in the 
Eclipse editor windows.

• Previously, other tools created verification conditions, shipped them 
to a back-end solver, which produced counterexample information 
that was essentially a dump of the prover state and was notoriously 
difficult to debug.

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 
OpenJML



OpenJML back-end SMT solvers – What is SMT? 

• SMT solvers are useful for verification, proving the correctness of 
programs, software testing based on symbolic execution, and for program
synthesis.

• Computer-aided verification of computer programs often uses SMT solvers.

• In computer science and mathematical logic, the satisfiability modulo 
theories (SMT) problem is a decision problem for logical formulas with 
respect to combinations of background theories expressed in classical first-
order logic with equality.
• Examples of theories: Real numbers, integers, theories of data structures like 

lists, arrays, bit-vectors, ...

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 
OpenJML



SMT Instances

• An SMT instance is a formula in first-order logic, where some function and 
predicate symbols have additional interpretations, and SMT is the problem of 
determining whether such a formula is satisfiable.

• An SMT instance is a generalization of a Boolean SAT instance in which various 
sets of variables are replaced by predicates from corresponding underlying 
theories.
• Boolean SAT problem is the problem of determining if there exists 

an interpretation that satisfies a given Boolean formula, i.e., it asks whether the 
variables of a given Boolean formula can be consistently replaced by the values 
TRUE or FALSE in such a way that the formula evaluates to TRUE.

• E.g., "a AND NOT b" is satisfiable and "a AND NOT a" is unsatisfiable.

• SMT formulas provide a much richer modeling language than is possible with 
Boolean SAT formulas.

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 
OpenJML



Verification and Testing with SMT Solvers

• For verification of programs a common technique is to translate 
preconditions, postconditions, loop conditions, and assertions into 
SMT formulas in order to determine if all properties can hold.

• Another important application of SMT solvers is symbolic 
execution for analysis and testing of programs.

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 
OpenJML



OpenJML back-end SMT solvers

• OpenJML translates JML specifications into SMT-LIB format and passes the proof 
problems implied by the Java+JML program to back-end SMT solvers.

• OpenJML can use any SMT-LIBv2-compliant solver.
• Z3, CVC4, Yices, ...
• Simplify was the theorem prover of the Extended Static Checkers ESC/Java 

and still supported by OpenJML. 

• Success in checking the consistency of the specifications and the code will 
depend on:
• (a) the capability of the back-end SMT solver,
• (b) the particular encoding of code + specifications into SMT by OpenJML, and
• (c) the complexity and style in which the code and specifications are written.

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 
OpenJML



OpenJML Z3 back-end SMT solver

• Supported theories: empty theory, 

linear arithmetic, nonlinear arithmetic, 

bit-vectors, arrays, datatypes,

quantifiers, strings

• Advanced algorithms for quantifier 

instantiation and theory combination.

• Z3 integrates a DPLL-based SAT solver, a 

core theory solver for equalities and 

uninterpreted functions, satellite solvers 

and an engine for quantifiers.

To get started:

https://rise4fun.com/z3/tutorial/guide
ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 

OpenJML

https://rise4fun.com/z3/tutorial/guide


OpenJML CVC4 back-end SMT solver

• CVC4 works with a version of first-order logic with polymorphic types.
• http://cvc4.cs.stanford.edu/web/

• Several built-in base theories: rational and integer linear arithmetic, arrays, 
tuples, records, inductive data types, bit-vectors, strings, and equality over 
uninterpreted function symbols (“empty theory”).

• Support for quantifiers through heuristic instantiation.

• CVC4 is fundamentally similar to other modern SMT solvers like Z3: it is a DPLL 
solver, with a SAT solver at its core and a delegation path to different decision 
procedure implementations, each in charge of solving formulas in some 
background theory.

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 
OpenJML

http://cvc4.cs.stanford.edu/web/


OpenJML and Simplify theorem prover

• Simplify is a theorem prover for program checking developed at HP 
Labs.

• Simplify is the proof engine of the Extended Static Checkers ESC/Java.

• The goal of ESC is to prove, at compile-time, the absence of certain 
run-time errors, such as out-of-bounds array accesses and unhandled 
exceptions.

• The ESC approach first processes source code with a verification 
condition generator, which produces first-order formulas asserting 
the absence of the targeted errors, and then submits those 
verification conditions to the theorem prover.

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 
OpenJML



OpenJML and Simplify theorem prover (cont.)

• Simplify’s input is an arbitrary first-order formula, including 
quantifiers. 

• Simplify handles propositional connectives by backtracking search 
and includes complete decision procedures for the supported 
theories (untyped first-order logic with function symbols and equality, 
arithmetic, maps, partial orders, ...).

• To test whether a formula is satisfiable, Simplify performs a 
backtracking search, guided by the propositional structure of the 
formula, attempting to find a satisfying assignment of truth values to 
atomic formulas that makes the formula true.

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 
OpenJML



OpenJML Yices 2 back-end SMT solver

• Yices 21 is an SMT solver that decides the satisfiability of formulas 
containing uninterpreted function symbols with equality, real and integer 
arithmetic, bit-vectors, scalar types, and tuples. 

• Both linear and nonlinear arithmetic is supported.

• Yices 2 includes a congruence-closure algorithm inspired by Simplify’s E-
graph and used an approach for theory combination based on the Nelson-
Oppen method (also used in Simplify and other SMT solvers) 
complemented with lazy generation of interface equalities.

1 http://yices.csl.sri.com/

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 
OpenJML

http://yices.csl.sri.com/


OpenJML and Testing

• JMLUnitNG1 is an automated unit test generation tool for JML-annotated 
Java code, including code using Java 1.5+ features such as generics, 
enumerated types, and enhanced for loops.

• JML assertions are used as test oracles.

• Tests can be generated for OpenJML RAC.

• Testing a class (or set of classes) with JMLUnitNG involves:
1. Generating the test classes

2. Compile the classes under test with OpenJML

3. Compile the generated (test) classes with a regular Java compiler

4. Run the tests.

1 http://insttech.secretninjaformalmethods.org/software/jmlunitng/

ITI8610 Software Assurance, Module III, Lecture 5: Tutorial on 
OpenJML

http://insttech.secretninjaformalmethods.org/software/jmlunitng/

