- 1. Given a public exponent, find suitable prime factors of the public modulus.
- 2. Consider a modified RSA signature scheme, in which we do not rely on CRT to combine rings \mathbb{Z}_p and \mathbb{Z}_q into ring \mathbb{Z}_{pq} , but instead, we work in one ring \mathbb{Z}_n , where *n* is a sufficiently large prime. The modified scheme works as follows.
 - (a) Alice selects a sufficiently large prime n, this is her public key.
 - (b) Alice calculates her private exponent $d \in \mathbb{Z}_{\varphi(n)}$ such that $d \cdot e \equiv 1 \pmod{\varphi(n)}$.
 - (c) To sign a document \hat{d} , Alice takes a hash of it $m = H(\hat{d}) \in \mathbb{Z}_n$, where H is some cryptographic hash function. Then she distributes her signature $m^d \mod n$ along with the document \hat{d} .
 - (d) To verify the signature, Bob computes $(m^d \mod n)^e \mod n = m$. The signature is valid if $m = H(\hat{d})$.

This signature scheme is not secure against passive adversary Carol, who can create an arbitrary amount of fake signatures on behalf of Alice. How can Carol do that?

- 3. Let Alice sends a cryptogram $m^e \mod n$ to Bob. Can adversary Carol recover m if $m^e < n$?
- 4. Alice sends the same message encrypted using the RSA algorithm to three different people with public keys n = 87, n = 115, n = 187. Let the public exponent be 3. Adversary Carol intercepts 3 cryptograms $c_1 = 43, c_2 = 80, c_3 = 65$. Can Eve recover the message without factoring public keys?
- 5. Adversary Carol intercepted two RSA cryptograms, $y_1 = 537$ sent by Alice to Bob, and $y_2 = 285$ sent by Alice to Eve. Alice knows that Bob's public exponent $e_1 = 18$, and public modulus $n_1 = 943$, while Eve's public exponent $e_2 = 19$, and her public modulus $n_2 = 943$. What is the message m sent by Alice to Bob and Eve?
- 6. Suppose that adversary Carol has intercepted 3 cryptograms y_1, y_2, y_3 sent by Alice to 3 different users whose public keys are n_1, n_2, n_3 , and the public exponent e = 3. What does Carol need to do to reconstruct the message m?
- 7. Show that RSA is not IND–CPA. The IND–CPA game is defined as follows
 - (a) The challenger generates a new key pair PK, SK and publishes PK to the adversary, the challenger retains SK.
 - (b) The adversary may perform a polynomially bounded number of calls to the encryption oracle or other operations.
 - (c) Eventually, the adversary submits two distinct plaintexts M_0 and M_1 to the challenger.
 - (d) The chellenger selects a bit $b \in \{0, 1\}$ uniformly at random, and sends the challenge ciphertext $C = E(PK, M_b)$ back to the adversary.
 - (e) The adversary is free to perform any number of additional computations.
 - (f) Finally, the adversary outputs a guess for the value b.

A cryptosystem is said to be IND-CPA if that every probabilistic polynomial time adversary has only a negligible advantage over random guessing.

- 8. Show that RSA is not IND-CCA2. The IND-CCA2 game is defined as follows.
 - (a) The challenger generates a new key pair PK, SK and publishes PK to the adversary, the challenger retains SK.
 - (b) The adversary may perform any number calls to the encryption or decryption oracles, or other operations.
 - (c) Eventually, the adversary submits two distinct chosen plaintexts M_0 and M_1 to the challenger.
 - (d) The challenger selects a bit $b \in \{0, 1\}$ uniformly at random, and sends the challenge ciphertext $C = E(PK, M_b)$ back to the adversary.
 - (e) The adversary is free to perform any number of additional computations, calls to the encryption and decryption oracles, but may not submit the challenge ciphertext C to the decryption oracle.
 - (f) Finally, the adversary outputs a guess for the value b.

Use the property properties of RSA, which is homomorphic w.r.t. multiplication, meaning that

$$\begin{cases} C_1 = m_1^e \mod n \\ C_2 = m_2^e \mod n \end{cases} \Longrightarrow C_1 \cdot C_2 = m_1^e \cdot m_2^e \mod n = (m_1 m_2)^e \mod n \end{cases}$$