Exercise 1. Prove that for all $n \in \mathbb{N}$

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Solution. It holds for $n=1$, since $1^{2}=\frac{1(1+1)(2 \cdot 1+1)}{6}$. Suppose it holds for some n. Then for $n+1$,

$$
\begin{aligned}
1^{2}+2^{2}+\ldots+n^{2}+(n+1)^{2} & =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}=\frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6} \\
& =\frac{(n+1)[n(2 n+1)+6(n+1)]}{6}=\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

Exercise 2. Prove that for all $n \in \mathbb{N}$

$$
1^{3}+2^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Solution. It holds for $n=1$, since $1^{3}=\frac{1^{2}(1+1)^{2}}{4}$. Suppose it holds for some n. Then for $n+1$,

$$
\begin{aligned}
1^{3}+2^{3}+\ldots+n^{3}+(n+1)^{3} & =\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{2}(n+1)=\frac{n^{2}(n+1)^{2}+4(n+1)^{2}(n+1)}{4} \\
& =\frac{(n+1)^{2}\left(n^{2}+4 n+4\right)}{4}=\frac{(n+1)^{2}(n+2)^{2}}{4}
\end{aligned}
$$

Exercise 3. Prove that $n!>2^{n}$ for $n \geqslant 4$.
Solution. It holds for $n=4$, since $4!=24>2^{4}=16$. Suppose it holds for some n. Then for $n+1$,

$$
(n+1)!=n!\cdot(n+1)>2 \cdot n!>2 \cdot 2^{n}>2^{n+1}
$$

Exercise 4. Prove that for all $n \in \mathbb{N}$,

$$
x+4 x+7 x+\ldots+(3 n-2) x=\frac{n(3 n-1) x}{2}
$$

Solution. It holds for $n=1$, since $x=\frac{2 x}{2}$. Suppose it holds for some n. Then for $n+1$,

$$
\begin{aligned}
x+4 x+\ldots+(3 n-2) x+(3(n+1)-2) x & =\frac{n(3 n-1) x}{2}+(3 n+1) x=\frac{n(3 n-1) x+2(3 n-1) x+4 x}{2} \\
& =\frac{x\left(3 n^{2}+5 n+2\right)}{2}=\frac{(n+1)(3 n+2) x}{2}
\end{aligned}
$$

Exercise 5. Prove that for all $n \in \mathbb{N}, 10^{n+1}+10^{n}+1$ is divisible by 3 .
Solution. It holds for $n=1$, since $10^{2}+10+1=111=3 \cdot 37$. Suppose it holds for some n. Then for $n+1$,

$$
10^{n+2}+10^{n+1}+1=10 \cdot 10^{n+1}+10 \cdot 10^{n}+10-9=10 \cdot\left(10^{n+1}+10^{n}+1\right)-9
$$

Exercise 6. Prove that for all $n \in N, 4 \cdot 10^{2 n}+9 \cdot 10^{2 n-1}+5$ is divisible by 99 .

Solution. It holds for $n=1$, since $4 \cdot 10^{2}+9 \cdot 10+5=495=99 * 5$. Suppose it holds for some n, then for $n+1$,

$$
\begin{aligned}
4 \cdot 10^{2(n+1)}+9 \cdot 10^{2(n+1)-1}+5 & =10^{2} \cdot 4 \cdot 10^{2 n}+10^{2} \cdot 9 \cdot 10^{2 n-1}+500-495 \\
& =10^{2} \cdot\left(4 \cdot 10^{2 n}+9 \cdot 10^{2 n-1}+5\right)-495
\end{aligned}
$$

Exercise 7. Prove that for all $n \in \mathbb{N}$

$$
1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1
$$

Solution. It holds for $n=1$, since $2^{1+1}-1=3=1+2$. Suppose it holds for some n. Then for $n+1$,

$$
1+2+2^{2}+\ldots+2^{n}+2^{n+1}=2^{n+1}-1+2^{n+1}=2^{n+2}-1
$$

Exercise 8. Prove that for all $n \in \mathbb{N}$

$$
\frac{1}{2}+\frac{1}{6}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

Solution. It clearly holds for $n=1$. Suppose it holds for some n, then for $n+1$,

$$
\begin{aligned}
\frac{1}{2}+\frac{1}{6}+\ldots+\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)} & =\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}=\frac{n^{2}+2 n+1}{(n+1)(n+2)} \\
& =\frac{(n+1)^{2}}{(n+1)(n+2)}=\frac{n+1}{n+2}
\end{aligned}
$$

Exercise 9. Prove that $2^{1}+2^{2}+\ldots+2^{n}=2^{n+1}-2$ for all $n \geqslant 1$.
Solution. For $n=1$ we have $2^{1}=2^{2}-2$. Suppose it holds for some n. For $n+1$ we have:

$$
2^{1}+2^{2}+\ldots+2^{n}+2^{n+1}=2^{n+1}-2+2^{n+1}=2 \cdot 2^{n+1}-2=2^{(n+1)+1}-2=2^{n+2}-2 .
$$

Exercise 10. Prove that $1+2+3+\ldots n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
Solution. It holds for $n=1$, since $1=\frac{1 \cdot(1+1)}{2}$. Suppose that it holds for some n. Then, for $n+1$

$$
1+2+3+\ldots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2} .
$$

Exercise 11. Prove that for all $n \in \mathbb{N}, n \geqslant 1$

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}=1-\frac{1}{n+1}
$$

Solution. It holds for $n=1$, since $\frac{1}{1 \cdot 2}=1-\frac{1}{1+1}=\frac{1}{2}$. Suppose it holds for some n. For $n+1$ we have:

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}=1-\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}=1-\frac{1}{n+2} .
$$

