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Kernel function

» Kernel function is the inner product of the feature vectors:

K(x,2) = ¢(x)" ¢(2)

» Kernel function can be constructed by either working out the inner
product of the feature vectors

» or by combining Mercer's kernels.

» Gram matrix K is a m X m symmetric matrix with elements:

Kij = ¢(x:)" o(x)) = K (xi,%;)
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Some popular kernel functions

» Linear kernel:
K(x,z)=x'z+b

» Polynomial kernel:
K(x,2) = (r+yx'z)?

» Gaussian kernel:

K(x,2) = exp (JIx—H)
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Examples of non-linear classification with SVM

logregL2, nerr=174 logregL1, nerr=169
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Kernelized Linear Regression

» Recall that the cost function is given as:

1 & W7 A
J(w) = 2; o(x;) — yz) +2W w

» Set the gradient with respect to w to zero and express w:

i\z T¢ Xz yz Xz Zaz¢ Xz =

» & is the design matrix containing feature vectors

> a is the vector (a1,...,an)T) where
LT
a; = =5 (W o(xi) — i)
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Dual for kernelized linear regression

Substitute w = ®T'a back to the cost function:

v

1 ) \
J(a) = ;a' 0070 a —a' 2Ty + Jy'y + Ja' 0o'a

» Gram matrix is defined here by K = &&T

Because the Gram matrix entries are inner products of feature vectors
it defines a kernel function.

v

v

In terms of the Gram matrix, the cost function can be written as:

1 1 A
J(a) = iaKKa —alKy + iny + §aTKa

Kairit Sirts Kernelized methods 16.05.2014 6 /25



Kernelized linear regression

v

wl¢(x) still exists in the definition of a;-s

Substitute w = ®Z'a and solve for a:

\4

a= K+, 'y

Substitute it to the model:

v

h(x) = WT¢(X) = aTq)gb(x) = k(x)T(K + )\Im)*ly

» k(x) is a vector with elements: k;(x) = K(x;,X)
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Some remarks

» Solving the kernelized linear regression model requires inverting the
matrix of size m x m, where m is the number of training items

» Solving the linear regression model in primal form required inverting
the matrix of size n x n, where n is the number of features

» Typically m is much larger than n, so in that sense the kernelized
version does not seem to be very useful

» However, in dual form, the feature vectors are only expressed via the
kernel function and this enables to work in very high dimensional
feature spaces
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Probabilistic linear regression

> Notation:
inputs: X;
outputs: Yi

predictions:  h; = h(x;) = w’ ¢(x;)
Predictions are given as usual:

v

h(x) = w' ¢(x)

v

Weight vector is given a Gaussian prior:
p(w) = N(w[0,0°1)

For each different value of w there is a different function h(x)

v

v

p(w) also induces probability distribution over functions h(x)
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Probabilistic linear regression

» We wish to evaluate the function h(x) at the training points
X1y.e 9y Xm
h = dw
» h is the vector with elements h; = h(x;)
» We are interested in the probability distribution over h

> Note that the linear combination of independent Gaussian random
variables is also Gaussian

» Each component in h is a linear combination of the Gaussian
components from w

» Therefore h is also a Gaussian
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Distribution of h

> As h is a Gaussian we need to find its mean and covariance:
E[h] = PE[w] =0
» Covariance in general can be computed as:
cov[x,y] = Exy[(x — E[x])(y" — E[y"])]
» Thus, the covariance of the h is:

cov[h] = E[(h — E[h])(h" — E[h"])]
= E[hh’] = oE[ww’ |0 = 5?3007 = K

» K is the gram matrix with elements:
Kij = K(xi,x3) = 07¢(x:)" ¢(x;)
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Gaussian processes

» The presented model is an example of a Gaussian process

» A Gaussian process is defined as a probability distribution over
functions h(x) such that the joint distribution over a set of values
evaluated at arbitrary points x1,...,X,, is a Gaussian

> A key property of the Gaussian processes that the joint distribution
over a set of m values is completely specified by the mean vector and
the co-variance matrix

» Usually, there is no prior information about the mean and so it's set
to zero

» The co-variance is given by the kernel function:

E[h(x;)h(x;)] = K (x;,%;)
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Example of Gaussian processes

Gaussian kernel: Exponential kernel:

K(x,z) = exp (—W) K(x,z) = exp (-%)
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Gaussian processes for regression

» Targets include noise:
yi = h; + ¢ eiNN(O,02)
» Thus we can express:
P(yilhi) = N (yilhi, 0%)
» Because we assume that the noise terms are independent:

P(y/h) = N(ylh,o°Ly,)
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Gaussian processes for regression
» According to the definition of the Gaussian processes:
P(h) = N(h|0,K)

» The choice of the kernel function depends on the application and
should be chosen such that for similar points x; and x; the values h;
and h; would be more correlated that for dissimilar points.

» For obtaining the marginal probability distribution over outputs we
have to integrate over hypotheses:

P(y) = [ p(yIbp(h)dh = N[0, C)
» Covariance matrix C elements are:
C(xi,x5) = K(xi,%5) + 02}1(1' =7)
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Digression: Finding the marginal Gaussian

» Given a marginal Gaussian for x:
P(x) = N(x|n, 5)
» and a conditional Gaussian of y given x:
P(ylx) = N(y|Ax +b,S)
» Then the marginal distribution of y is Gaussian and can be found as:

P(y) =N(y|Ap +b,S + AXAT)
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Example kernel for Gaussian process regression

» A widely used kernel function for Gaussian process regression is:

0
K(xi,%xj) = 6y exp <_51HX’ — xj]|2> + 69 + ngérxj

(1.00,0.25, 0.00, 0.00) (9.00,4.00,0.00, 0.00) (100, 64.00,0.00,0.00)
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Example draw from a Gaussian process prior

» Blue line is the sampled function
» Red points show the values of h; evaluated on a set of points
» Green points are the noisy observations at the same set of points

3
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Predictions in Gaussian process regression

» Assume we have m training data points with observed labels

v

Our goal is to make prediction ¥,,,41 for a new datapoint X, 41

v

For that we have to find the predictive distribution:

P(ym41ly)

v

We begin from the joint distribution:

P(ym+1) = P(¥, Ym+1) = N(¥m4+1|0, Crng1)

» Cpr1isa (m+ 1) x (m+ 1) co-variance matrix with entries:

C<Xiaxj) - K(Xiaxj) + U2H(i = .7)
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Predictive distribution

Partitition the co-variance matrix:

C, k
Cmi1 = <kT c)

C,,, is the covariance matrix for y

v

v

v

k is a vector with elements K (x;,X;,41) fori=1,...,m

v

cis a number ¢ = K (X1, Xmi1) + 02

» Using some properties of the Gaussians, we get the mean and
covariance of the predictive distribution:

M(Xmy1) = kTCr_nly
0% (Xmi1) = c — kT'C 'k
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Gaussian process regression prediction: example

» Green is the underlying function
» Blue points are the noisy observations
» Red line is the mean of the Gaussian process predictive distribution
» Shaded region corresponds to +2 standard deviations
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Gaussian process regression prediction: example

» Example with one training point and one test point

» Red lines show the contours of p(t1,12)

» Green line show the predictive distribution p(ta|t1)
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Mean of the predictive distribution

» The mean of the predictive distribution for the point x,,+1 is:
Xm+1 Z a; K Xz; Xm+1)

» where a; is the i-th component of C;,ly
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Remarks

» Gaussian processes regression requires the inversion of a matrix of size
m X m

» This inversion must be done only once for a given training set
» For each new test point we must do a vector-matrix multiplication

» If the feature vector dimensionality n is finite and it is smaller than
m, it will be more efficient to perform Bayesian linear regression in
the original parameter space

» The advantage of Gaussian processes is the ability to use covariance
functions that can only expressed in infinite-dimensional feature space

» For large training sets, the direct application of Gaussian processes
can be infeasible, so one must use some approximation scheme
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Learning the hyperparameters

v

Hyperparameters are the parameters in the covariance function
(kernel)

One can do a grid-search on development set

v

v

Better way is to estimate the hyperparameter values from the data

v

Point estimates can be obtained by maximizing the log-likelihood
p(y|@) using gradient-based optimization techniques

v

We can also introduce prior to the parameters and maximize the
log-posterior
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