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Kernel function

I Kernel function is the inner product of the feature vectors:

K(x, z) = φ(x)Tφ(z)

I Kernel function can be constructed by either working out the inner
product of the feature vectors

I or by combining Mercer’s kernels.

I Gram matrix K is a m×m symmetric matrix with elements:

Kij = φ(xi)
Tφ(xj) = K(xi,xj)
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Some popular kernel functions

I Linear kernel:
K(x, z) = xT z + b

I Polynomial kernel:
K(x, z) = (r + γxT z)p

I Gaussian kernel:

K(x, z) = exp

(
−‖x− z‖2

2σ2

)
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Examples of non-linear classification with SVM

−2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

logregL2, nerr=174

−2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

logregL1, nerr=169

−2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

RVM, nerr=173

−2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

SVM, nerr=173

Kairit Sirts Kernelized methods 16.05.2014 4 / 25



Kernelized Linear Regression

I Recall that the cost function is given as:

J(w) =
1

2

m∑
i=1

(wTφ(xi)− yi)2 +
λ

2
wTw

I Set the gradient with respect to w to zero and express w:

w = − 1

λ

m∑
i=1

(wTφ(xi)− yi)φ(xi) =

m∑
i=1

aiφ(xi) = ΦTa

I Φ is the design matrix containing feature vectors

I a is the vector (a1, . . . , am)T ) where

ai = − 1

λ
(wTφ(xi)− yi)
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Dual for kernelized linear regression

I Substitute w = ΦTa back to the cost function:

J(a) =
1

2
aTΦΦTΦΦTa− aTΦΦTy +

1

2
yTy +

λ

2
aTΦΦTa

I Gram matrix is defined here by K = ΦΦT

I Because the Gram matrix entries are inner products of feature vectors
it defines a kernel function.

I In terms of the Gram matrix, the cost function can be written as:

J(a) =
1

2
aKKa− aTKy +

1

2
yTy +

λ

2
aTKa
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Kernelized linear regression

I wTφ(x) still exists in the definition of ai-s

I Substitute w = ΦTa and solve for a:

a = (K + λIm)−1y

I Substitute it to the model:

h(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λIm)−1y

I k(x) is a vector with elements: ki(x) = K(xi,x)
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Some remarks

I Solving the kernelized linear regression model requires inverting the
matrix of size m×m, where m is the number of training items

I Solving the linear regression model in primal form required inverting
the matrix of size n× n, where n is the number of features

I Typically m is much larger than n, so in that sense the kernelized
version does not seem to be very useful

I However, in dual form, the feature vectors are only expressed via the
kernel function and this enables to work in very high dimensional
feature spaces
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Probabilistic linear regression

I Notation:

inputs: xi

outputs: yi
predictions: hi = h(xi) = wTφ(xi)

I Predictions are given as usual:

h(x) = wTφ(x)

I Weight vector is given a Gaussian prior:

p(w) = N (w|0, σ2I)

I For each different value of w there is a different function h(x)

I p(w) also induces probability distribution over functions h(x)
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Probabilistic linear regression

I We wish to evaluate the function h(x) at the training points
x1, . . . ,xm

h = Φw

I h is the vector with elements hi = h(xi)

I We are interested in the probability distribution over h

I Note that the linear combination of independent Gaussian random
variables is also Gaussian

I Each component in h is a linear combination of the Gaussian
components from w

I Therefore h is also a Gaussian
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Distribution of h

I As h is a Gaussian we need to find its mean and covariance:

E[h] = ΦE[w] = 0

I Covariance in general can be computed as:

cov[x,y] = Ex,y[(x− E[x])(yT − E[yT ])]

I Thus, the covariance of the h is:

cov[h] = E[(h− E[h])(hT − E[hT ])]

= E[hhT ] = ΦE[wwT ]ΦT = σ2ΦΦT = K

I K is the gram matrix with elements:

Kij = K(xi,xk) = σ2φ(xi)
Tφ(xj)
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Gaussian processes

I The presented model is an example of a Gaussian process

I A Gaussian process is defined as a probability distribution over
functions h(x) such that the joint distribution over a set of values
evaluated at arbitrary points x1, . . . ,xm is a Gaussian

I A key property of the Gaussian processes that the joint distribution
over a set of m values is completely specified by the mean vector and
the co-variance matrix

I Usually, there is no prior information about the mean and so it’s set
to zero

I The co-variance is given by the kernel function:

E[h(xi)h(xj)] = K(xi,xj)
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Example of Gaussian processes

Gaussian kernel:

K(x, z) = exp

(
−‖x− z‖2

2σ

)
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Exponential kernel:

K(x, z) = exp

(
−‖x− z‖

2σ

)
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Gaussian processes for regression

I Targets include noise:

yi = hi + εi εi ∼ N (0, σ2)

I Thus we can express:

P (yi|hi) = N (yi|hi, σ2)

I Because we assume that the noise terms are independent:

P (y|h) = N (y|h, σ2Im)
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Gaussian processes for regression

I According to the definition of the Gaussian processes:

P (h) = N (h|0,K)

I The choice of the kernel function depends on the application and
should be chosen such that for similar points xi and xj the values hi
and hj would be more correlated that for dissimilar points.

I For obtaining the marginal probability distribution over outputs we
have to integrate over hypotheses:

P (y) =

∫
p(y|h)p(h)dh = N (y|0,C)

I Covariance matrix C elements are:

C(xi,xj) = K(xi,xj) + σ2I(i = j)
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Digression: Finding the marginal Gaussian

I Given a marginal Gaussian for x:

P (x) = N (x|µ,Σ)

I and a conditional Gaussian of y given x:

P (y|x) = N (y|Ax + b,S)

I Then the marginal distribution of y is Gaussian and can be found as:

P (y) = N (y|Aµ + b,S + AΣAT )
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Example kernel for Gaussian process regression

I A widely used kernel function for Gaussian process regression is:

K(xi,xj) = θ0 exp

(
−θ1

2
‖xi − xj‖2

)
+ θ2 + θ3x

T
i xj
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Example draw from a Gaussian process prior
I Blue line is the sampled function
I Red points show the values of hi evaluated on a set of points
I Green points are the noisy observations at the same set of points
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Predictions in Gaussian process regression

I Assume we have m training data points with observed labels

I Our goal is to make prediction ym+1 for a new datapoint xm+1

I For that we have to find the predictive distribution:

P (ym+1|y)

I We begin from the joint distribution:

P (ym+1) = P (y, ym+1) = N (ym+1|0,Cm+1)

I Cm+1 is a (m+ 1)× (m+ 1) co-variance matrix with entries:

C(xi,xj) = K(xi,xj) + σ2I(i = j)
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Predictive distribution

I Partitition the co-variance matrix:

Cm+1 =

(
Cm k
kT c

)
I Cm is the covariance matrix for y

I k is a vector with elements K(xi,xm+1) for i = 1, . . . ,m

I c is a number c = K(xm+1,xm+1) + σ2

I Using some properties of the Gaussians, we get the mean and
covariance of the predictive distribution:

µ(xm+1) = kTC−1
m y

σ2(xm+1) = c− kTC−1
m k
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Gaussian process regression prediction: example
I Green is the underlying function
I Blue points are the noisy observations
I Red line is the mean of the Gaussian process predictive distribution
I Shaded region corresponds to ±2 standard deviations
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Gaussian process regression prediction: example
I Example with one training point and one test point
I Red lines show the contours of p(t1, t2)
I Green line show the predictive distribution p(t2|t1)
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Mean of the predictive distribution

I The mean of the predictive distribution for the point xm+1 is:

µ(xm+1) =

m∑
i=1

aiK(xi,xm+1)

I where ai is the i-th component of C−1
m y
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Remarks

I Gaussian processes regression requires the inversion of a matrix of size
m×m

I This inversion must be done only once for a given training set

I For each new test point we must do a vector-matrix multiplication

I If the feature vector dimensionality n is finite and it is smaller than
m, it will be more efficient to perform Bayesian linear regression in
the original parameter space

I The advantage of Gaussian processes is the ability to use covariance
functions that can only expressed in infinite-dimensional feature space

I For large training sets, the direct application of Gaussian processes
can be infeasible, so one must use some approximation scheme
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Learning the hyperparameters

I Hyperparameters are the parameters in the covariance function
(kernel)

I One can do a grid-search on development set

I Better way is to estimate the hyperparameter values from the data

I Point estimates can be obtained by maximizing the log-likelihood
p(y|θ) using gradient-based optimization techniques

I We can also introduce prior to the parameters and maximize the
log-posterior
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