Kernelized methods

Kairit Sirts

16.05.2014

Kernelized methods

16.05.2014 1 / 25

(日) (四) (三) (三) (三)

Kernel function

Kernel function is the inner product of the feature vectors:

$$K(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^T \phi(\mathbf{z})$$

- Kernel function can be constructed by either working out the inner product of the feature vectors
- or by combining Mercer's kernels.
- Gram matrix K is a $m \times m$ symmetric matrix with elements:

$$K_{ij} = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) = K(\mathbf{x}_i, \mathbf{x}_j)$$

イロト イポト イヨト イヨト

Some popular kernel functions

Linear kernel:

$$K(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T \mathbf{z} + b$$

Polynomial kernel:

$$K(\mathbf{x}, \mathbf{z}) = (r + \gamma \mathbf{x}^T \mathbf{z})^p$$

Gaussian kernel:

$$K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2}\right)$$

▲ ■ ▶ ■ の Q @ 16.05.2014 3 / 25

<ロ> (日) (日) (日) (日) (日)

Examples of non-linear classification with SVM

Kernelized methods

16.05.2014 4 / 25

イロト イ団ト イヨト イヨト 三日

Kernelized Linear Regression

Recall that the cost function is given as:

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (\mathbf{w}^{T} \phi(\mathbf{x}_{i}) - y_{i})^{2} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

Set the gradient with respect to w to zero and express w:

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{i=1}^{m} (\mathbf{w}^T \phi(\mathbf{x}_i) - y_i) \phi(\mathbf{x}_i) = \sum_{i=1}^{m} a_i \phi(\mathbf{x}_i) = \Phi^T \mathbf{a}$$

- $\blacktriangleright~\Phi$ is the design matrix containing feature vectors
- a is the vector $(a_1, \ldots, a_m)^T)$ where

$$a_i = -\frac{1}{\lambda} (\mathbf{w}^T \phi(\mathbf{x}_i) - y_i)$$

Kairit Sirts

Kernelized methods

16.05.2014 5 / 25

Dual for kernelized linear regression

• Substitute $\mathbf{w} = \Phi^T \mathbf{a}$ back to the cost function:

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^T \Phi \Phi^T \Phi \Phi^T \mathbf{a} - \mathbf{a}^T \Phi \Phi^T \mathbf{y} + \frac{1}{2}\mathbf{y}^T \mathbf{y} + \frac{\lambda}{2}\mathbf{a}^T \Phi \Phi^T \mathbf{a}$$

- Gram matrix is defined here by $\mathbf{K} = \Phi \Phi^T$
- Because the Gram matrix entries are inner products of feature vectors it defines a kernel function.
- In terms of the Gram matrix, the cost function can be written as:

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}\mathbf{K}\mathbf{K}\mathbf{a} - \mathbf{a}^{T}\mathbf{K}\mathbf{y} + \frac{1}{2}\mathbf{y}^{T}\mathbf{y} + \frac{\lambda}{2}\mathbf{a}^{T}\mathbf{K}\mathbf{a}$$

Kairit Sirts

16.05.2014 6 / 25

イロト イポト イヨト イヨト

Kernelized linear regression

- $\mathbf{w}^T \phi(\mathbf{x})$ still exists in the definition of a_i -s
- Substitute $\mathbf{w} = \Phi^T \mathbf{a}$ and solve for \mathbf{a} :

$$\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_m)^{-1} \mathbf{y}$$

Substitute it to the model:

$$h(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) = \mathbf{a}^T \Phi \phi(\mathbf{x}) = \mathbf{k}(\mathbf{x})^T (\mathbf{K} + \lambda \mathbf{I}_m)^{-1} \mathbf{y}$$

• $\mathbf{k}(\mathbf{x})$ is a vector with elements: $k_i(\mathbf{x}) = K(\mathbf{x}_i, \mathbf{x})$

▲ロト ▲興ト ▲ヨト ▲ヨト ニヨー わえぐ

Some remarks

- ▶ Solving the kernelized linear regression model requires inverting the matrix of size $m \times m$, where m is the number of training items
- ► Solving the linear regression model in primal form required inverting the matrix of size *n* × *n*, where *n* is the number of features
- ► Typically *m* is much larger than *n*, so in that sense the kernelized version does not seem to be very useful
- However, in dual form, the feature vectors are only expressed via the kernel function and this enables to work in very high dimensional feature spaces

(日) (周) (三) (三)

Probabilistic linear regression

Notation:

Predictions are given as usual:

$$h(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

Weight vector is given a Gaussian prior:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \sigma^2 \mathbf{I})$$

- For each different value of \mathbf{w} there is a different function $h(\mathbf{x})$
- $p(\mathbf{w})$ also induces probability distribution over functions $h(\mathbf{x})$

(日) (周) (三) (三)

Probabilistic linear regression

 \blacktriangleright We wish to evaluate the function $h(\mathbf{x})$ at the training points $\mathbf{x}_1,\ldots,\mathbf{x}_m$

$$\mathbf{h} = \Phi \mathbf{w}$$

- **h** is the vector with elements $h_i = h(\mathbf{x}_i)$
- \blacktriangleright We are interested in the probability distribution over ${\bf h}$
- Note that the linear combination of independent Gaussian random variables is also Gaussian
- Each component in h is a linear combination of the Gaussian components from w
- Therefore h is also a Gaussian

Distribution of ${\bf h}$

► As h is a Gaussian we need to find its mean and covariance:

 $\mathbb{E}[\mathbf{h}] = \Phi \mathbb{E}[\mathbf{w}] = \mathbf{0}$

Covariance in general can be computed as:

$$\operatorname{cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{y}^T - \mathbb{E}[\mathbf{y}^T])]$$

Thus, the covariance of the h is:

$$\begin{aligned} \mathsf{cov}[\mathbf{h}] &= \mathbb{E}[(\mathbf{h} - \mathbb{E}[\mathbf{h}])(\mathbf{h}^T - \mathbb{E}[\mathbf{h}^T])] \\ &= \mathbb{E}[\mathbf{h}\mathbf{h}^T] = \Phi \mathbb{E}[\mathbf{w}\mathbf{w}^T]\Phi^T = \sigma^2 \Phi \Phi^T = \mathbf{K} \end{aligned}$$

K is the gram matrix with elements:

$$K_{ij} = K(\mathbf{x}_i, \mathbf{x}_k) = \sigma^2 \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Kairit Sirts

Kernelized methods

16.05.2014 11 / 25

Gaussian processes

- ► The presented model is an example of a Gaussian process
- ► A Gaussian process is defined as a probability distribution over functions h(x) such that the joint distribution over a set of values evaluated at arbitrary points x₁,..., x_m is a Gaussian
- ► A key property of the Gaussian processes that the joint distribution over a set of *m* values is completely specified by the mean vector and the co-variance matrix
- Usually, there is no prior information about the mean and so it's set to zero
- ► The co-variance is given by the kernel function:

$$\mathbb{E}[h(\mathbf{x}_i)h(\mathbf{x}_j)] = K(\mathbf{x}_i, \mathbf{x}_j)$$

Kairit Sirts

Kernelized methods

16.05.2014 12 / 25

Example of Gaussian processes

Gaussian kernel:

$$K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma}\right)$$

Exponential kernel:

$$K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|}{2\sigma}\right)$$

Kairit Sirts

Kernelized methods

16.05.2014 13 / 25

Gaussian processes for regression

Targets include noise:

$$y_i = h_i + \epsilon_i \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Thus we can express:

$$P(y_i|h_i) = \mathcal{N}(y_i|h_i, \sigma^2)$$

Because we assume that the noise terms are independent:

$$P(\mathbf{y}|\mathbf{h}) = \mathcal{N}(\mathbf{y}|\mathbf{h}, \sigma^2 \mathbf{I}_m)$$

Kairit Sirts

Kernelized methods

16.05.2014 14 / 25

Gaussian processes for regression

According to the definition of the Gaussian processes:

 $P(\mathbf{h}) = \mathcal{N}(\mathbf{h}|\mathbf{0}, \mathbf{K})$

- The choice of the kernel function depends on the application and should be chosen such that for similar points x_i and x_j the values h_i and h_j would be more correlated that for dissimilar points.
- For obtaining the marginal probability distribution over outputs we have to integrate over hypotheses:

$$P(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{h})p(\mathbf{h})d\mathbf{h} = \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{C})$$

Covariance matrix C elements are:

$$C(\mathbf{x}_i, \mathbf{x}_j) = K(\mathbf{x}_i, \mathbf{x}_j) + \sigma^2 \mathbb{I}(i=j)$$

Kairit Sirts

Kernelized methods

16.05.2014 15 / 25

Digression: Finding the marginal Gaussian

• Given a marginal Gaussian for x:

$$P(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

► and a conditional Gaussian of y given x:

$$P(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{S})$$

► Then the marginal distribution of y is Gaussian and can be found as:

$$P(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{S} + \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$$

Kairit Sirts

Kernelized methods

16.05.2014 16 / 25

Example kernel for Gaussian process regression

A widely used kernel function for Gaussian process regression is:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \theta_0 \exp\left(-\frac{\theta_1}{2} \|\mathbf{x}_i - \mathbf{x}_j\|^2\right) + \theta_2 + \theta_3 \mathbf{x}_i^T \mathbf{x}_j$$

Kernelized methods

16.05.2014 17 / 25

(日) (同) (日) (日) (日)

Example draw from a Gaussian process prior

- Blue line is the sampled function
- Red points show the values of h_i evaluated on a set of points
- Green points are the noisy observations at the same set of points

Predictions in Gaussian process regression

- \blacktriangleright Assume we have m training data points with observed labels
- Our goal is to make prediction y_{m+1} for a new datapoint \mathbf{x}_{m+1}
- For that we have to find the predictive distribution:

 $P(y_{m+1}|\mathbf{y})$

We begin from the joint distribution:

$$P(\mathbf{y}_{m+1}) = P(\mathbf{y}, y_{m+1}) = \mathcal{N}(\mathbf{y}_{m+1} | \mathbf{0}, \mathbf{C}_{m+1})$$

▶ C_{m+1} is a $(m+1) \times (m+1)$ co-variance matrix with entries:

$$C(\mathbf{x}_i, \mathbf{x}_j) = K(\mathbf{x}_i, \mathbf{x}_j) + \sigma^2 \mathbb{I}(i=j)$$

Kairit Sirts

16.05.2014 19 / 25

Predictive distribution

Partitition the co-variance matrix:

$$\mathbf{C}_{m+1} = \begin{pmatrix} \mathbf{C}_m & \mathbf{k} \\ \mathbf{k}^T & c \end{pmatrix}$$

- \mathbf{C}_m is the covariance matrix for \mathbf{y}
- ▶ **k** is a vector with elements $K(\mathbf{x}_i, \mathbf{x}_{m+1})$ for i = 1, ..., m
- c is a number $c = K(\mathbf{x}_{m+1}, \mathbf{x}_{m+1}) + \sigma^2$
- Using some properties of the Gaussians, we get the mean and covariance of the predictive distribution:

$$\boldsymbol{\mu}(\mathbf{x}_{m+1}) = \mathbf{k}^T \mathbf{C}_m^{-1} \mathbf{y}$$
$$\sigma^2(\mathbf{x}_{m+1}) = c - \mathbf{k}^T \mathbf{C}_m^{-1} \mathbf{k}$$

Kairit Sirts

Kernelized methods

16.05.2014 20 / 25

Gaussian process regression prediction: example

- Green is the underlying function
- Blue points are the noisy observations
- ▶ Red line is the mean of the Gaussian process predictive distribution
- \blacktriangleright Shaded region corresponds to ± 2 standard deviations

Gaussian process regression prediction: example

- Example with one training point and one test point
- Red lines show the contours of $p(t_1, t_2)$
- Green line show the predictive distribution $p(t_2|t_1)$

Kairit Sirts

Kernelized methods

16.05.2014 22 / 25

Mean of the predictive distribution

• The mean of the predictive distribution for the point \mathbf{x}_{m+1} is:

$$\boldsymbol{\mu}(\mathbf{x}_{m+1}) = \sum_{i=1}^{m} a_i K(\mathbf{x}_i, \mathbf{x}_{m+1})$$

• where a_i is the *i*-th component of $\mathbf{C}_m^{-1}\mathbf{y}$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Remarks

- \blacktriangleright Gaussian processes regression requires the inversion of a matrix of size $m \times m$
- This inversion must be done only once for a given training set
- For each new test point we must do a vector-matrix multiplication
- If the feature vector dimensionality n is finite and it is smaller than m, it will be more efficient to perform Bayesian linear regression in the original parameter space
- The advantage of Gaussian processes is the ability to use covariance functions that can only expressed in infinite-dimensional feature space
- For large training sets, the direct application of Gaussian processes can be infeasible, so one must use some approximation scheme

Learning the hyperparameters

- Hyperparameters are the parameters in the covariance function (kernel)
- One can do a grid-search on development set
- Better way is to estimate the hyperparameter values from the data
- ▶ Point estimates can be obtained by maximizing the log-likelihood p(y|θ) using gradient-based optimization techniques
- We can also introduce prior to the parameters and maximize the log-posterior