Theory of Probability

Aleksandr Lenin

Sample space

Set Ω is called the sample space - a collection of all possible outcomes of a random experiment.

Requirement on Ω : a given instance of the experiment must produce a result $\omega \in \Omega$ corresponding to exactly one of the elements in Ω.
$\Omega=\{H, T\}$ - a coin tossed once may show either heads or tails.
$\Omega=\{H H, H T, T H, T T\}$ - same coin, but tossed twice. Two tosses of a coin correspond to one experiment
$\Omega=\{1,2,3, \ldots, 6\}-$ single throw of a dice.

Event

Events are subsets $A \subseteq \Omega$. In our case, all subsets are events.
$A=\{$ the number of heads $\leqslant 1\}=\{H T, T H, T T\}$.
$B=\{1$ st toss $=2$ nd toss $\}=\{H H, T T\}$.
$C=\{$ the outcome of a die is even $\}=\{2,4,6\}$.
An event A happens if $\omega \in A$.
Ω - a certain event (it always happens).
\emptyset - an impossible event (it never happens).

Event Algebra

$\bigcup_{i=1}^{n} A_{i}$ - a union of n events - a set of elements belonging to
at least one of the sets A_{i}.
$\bigcap_{i=1}^{n} A_{i}$ - an intersection of n events - a set of elements belonging to all sets A_{i}.
\bar{A} - complement of A - a set of elements which do not belong to A.

Event Algebra

$$
\begin{aligned}
& \Omega=\{1,2,3,4,5,6\} . \\
& A=\{\text { dice outcome is even }\}=\{2,4,6\} . \\
& B=\{\text { dice outcome } \geqslant 3\}=\{3,4,5,6\} . \\
& A \cup B=\{2,3,4,5,6\} . \\
& A \cap B=\{4,6\} . \\
& \bar{A}=\{1,3,5\} . \\
& \bar{B}=\{1,2\} .
\end{aligned}
$$

Events A and B are mutually exclusive if $A \cup B=\emptyset$.

Sigma algebra

A sigma-algebra \mathcal{F} is a collection of subsets of Ω, satisfying the following requirements:

1. $\Omega \in \mathcal{F}$
2. $\left\{A_{i}\right\}_{i \in \mathbb{N}} \in \mathcal{F} \Longrightarrow \bigcup_{i=1}^{\infty} A_{n} \in \mathcal{F}$
3. $A \in \mathcal{F} \Longrightarrow \bar{A} \in \mathcal{F}$

Consequently: $\emptyset \in \mathcal{F}$ and $\bigcap_{i=1}^{\infty} A_{i} \in \mathcal{F}$.
In finite Ω we shall be able to take \mathcal{F} as a powerset of Ω, and \mathcal{F} itself is a set of all events.

Any subset $A \subseteq \mathcal{F}$ is called a measurable set.

Probability

A probability (measure) is a function $\mathrm{P}: A \rightarrow \mathbb{R}$ such that:

- $0 \leqslant \mathrm{P}[A] \leqslant 1$ for every event $A \in \mathcal{F}$
- $\mathrm{P}[\Omega]=1$
- If $\left\{A_{i}\right\}_{i \in \mathbb{N}}$ are mutually exclusive

$$
\left(A_{i} \cap A_{j}=\emptyset \text { for } i \neq j\right) \text {, then } \mathrm{P}\left[\bigcup_{i=1}^{\infty} A_{i}\right]=\sum_{i=1}^{\infty} \mathrm{P}\left[A_{i}\right] .
$$

The triplet $(\Omega, \mathcal{F}, \mathrm{P})$ is called the probability space. It is a measure space with the probability function as a measure in this space.

If \mathcal{F} is the powerset of Ω, we omit \mathcal{F} and say that a probability space is a pair (Ω, P).

Learning and Conditional Probability

Somehow we learn that event B (with $\mathrm{P}[B] \neq 0$) happens, i.e. $\omega \in B$.

We may consider learning as a process where the probability space (Ω, P) is changing to a new probability space $\left(\Omega^{\prime}, \mathrm{P}^{\prime}\right)$, where $\Omega^{\prime}=B$.
We want that there is β, so that $\mathrm{P}^{\prime}[A]=\beta \cdot \mathrm{P}[A \cap B]$ for any event A.
As in the new space $\mathrm{P}^{\prime}[B]=\mathrm{P}^{\prime}\left[\Omega^{\prime}\right]=1$, we have $\beta=\frac{1}{\mathrm{P}[B \cap B]}=\frac{1}{\mathrm{P}[B]}$, i.e.

$$
\mathrm{P}^{\prime}[A]=\frac{\mathrm{P}[A \cap B]}{\mathrm{P}[B]} .
$$

The probability $\mathrm{P}^{\prime}[A]$ is denoted by $\mathrm{P}[A \mid B]$ and is called the conditional probability of A assuming that B happens.

Learning and Conditional Probability

$\Omega=\{1,2,3,4,5,6\}$ for a dice.
$A=\{$ the outcome is even $\}$.
$B=\{$ the outcome is 2$\}$.
$\mathrm{P}[B]=\frac{1}{6}$.
$\mathrm{P}[A]=\frac{3}{6}=\frac{1}{2}$.
$\mathrm{P}[B \mid A]=\frac{\mathrm{P}[B \cap A]}{\mathrm{P}[A]}=\frac{\mathrm{P}[B]}{\mathrm{P}[A]}=\frac{1}{3}$.
The probability of outcome 2 given that the outcome was even, is $\frac{1}{3}$.

The Chain rule and the Bayes formula

$$
\begin{aligned}
& P[A \mid B]=\frac{P[A \cap B]}{P[B]} \Longrightarrow P[A \cap B]=P[A \mid B] \cdot P B \\
& P[B \mid A]=\frac{P[A \cap B]}{P[A]} \Longrightarrow P[A \cap B]=P[B \mid A] \cdot P A
\end{aligned}
$$

this is known as the chain rule. Hence,

$$
P[A \cap B]=P[A \mid B] \cdot P[B]=P[B \mid A] \cdot P A
$$

and we obtain the Bayes rule:

$$
P[A \mid B]=\frac{P[B \mid A] \cdot P A}{P[B]}
$$

Random Variables and Probability Distributions

Random variable X is any function $X: \Omega \Rightarrow R$, where R is called the range of X.
For any $x \in R$, we define $X^{-1}(x)$ as the event $\{\omega: X(\omega)=x\}$ and use the notation:

$$
\underset{X}{\mathrm{P}}[x]=\mathrm{P}[X=x]=\mathrm{P}\left[X^{-1}(x)\right] .
$$

Note that if $x \neq x^{\prime}$ then the events $X^{-1}(x)$ and $X^{-1}\left(x^{\prime}\right)$ are mutually exclusive.

Random Variables and Probability Distributions

As $\bigcup_{x \in R} X^{-1}(x)=\Omega$, we have:

$$
\sum_{x} \underset{X}{ }[x]=\mathrm{P}\left[\bigcup_{x \in R} X^{-1}(x)\right]=\mathrm{P}[\Omega]=1
$$

If $R=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, then the sequence of values $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $p_{i}=\mathrm{P}_{X}\left[x_{i}\right]$, is called the probability distribution of X.

Independent Events and Random Variables

Events A and B are said to be independent if $\mathrm{P}[A \cap B]=\mathrm{P}[A] \cdot \mathrm{P}[B]$.

If $\mathrm{P}[A] \neq 0 \neq \mathrm{P}[B]$, then independence is equivalent to:

$$
\mathrm{P}[A \mid B]=\mathrm{P}[A] \quad \mathrm{P}[B \mid A]=\mathrm{P}[B]
$$

so that the probability of A does not change, if we learn that B happened.

Direct Product of Random Variables

The direct product of random variables X and Y on a probability space (Ω, P) is a random variable defined by

$$
(X Y)(\omega)=(X(\omega), Y(\omega))
$$

Independent Events and Random Variables

We say that X and Y are independent random variables if for every $x \in R_{X}$ and $y \in R_{Y}$:

$$
\begin{aligned}
\mathrm{P}[X=x, Y=y] & =\mathrm{P}\left[X^{-1}(x) \cap Y^{-1}(y)\right] \\
& =\mathrm{P}\left[X^{-1}(x)\right] \cdot \mathrm{P}\left[Y^{-1}(y)\right] \\
& =\mathrm{P}[X=x] \cdot \mathrm{P}[Y=y] .
\end{aligned}
$$

This means that the knowledge of the value of Y does not influence the probability distribution of X.

Mean of a Random Variable

By mean or expected value μ of a random variable X we mean the sum

$$
\begin{array}{c|cccccc}
\mu=\sum \omega \cdot X(\omega) \\
\omega: & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline X(\omega): & 0.1 & 0.2 & 0.3 & 0.2 & 0.1 & 0.1 \\
\mu=E(X)=0.1+0.4+0.9+0.8+0.5+0.6=3.3
\end{array}
$$

Dispersion of a Random Variable

Dispersion measures the extent to which the distribution is extended or squeezed. Common examples of statistical dispersion are:

The variance $\operatorname{Var}(X)$ is the sum:

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=\sum X(\omega)(\omega-\mu)^{2}
$$

The standard deviation is the square root of the variance:

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

Ordered samples of size r, with replacement

The number of ordered samples of size r with replacement from n objects

$$
n \times n \times \ldots=n^{r}
$$

The number of possible outcomes if 3 dices are thrown is $6 \times 6 \times 6=216$.

Ordered samples of size r, without replacement

The number of ordered samples of size r without replacement from n objects is:

$$
(n)_{r}=n \cdot(n-1) \cdots(n-r+1)=\frac{n!}{(n-r)!}
$$

where $\quad n=1,2, \ldots, n$.
The number of 3 digit numbers that can be formed from $1,2, \ldots, 9$, if no digit can be repeated, is $9 \cdot 8 \cdot 7=504$.

Unordered samples of size r, without replacement

The number of unordered samples of size r without replacement from of n objects is:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

How many distinct sequences can we make using 3 letter "A"s and 5 letter "B"s? (AAABBBBB, AABABBBB, etc.) You have 8 positions total, 3 of them for As, 5 for Bs. The total number of ways is

$$
\binom{8}{3}=\binom{8}{5}
$$

Unordered samples of size r, with replacement

The number of ways to place r indistinguishable objects into n distinct sells is:

$$
\binom{n+r-1}{r}=\binom{n+r-1}{n-1}
$$

10 passengers get on an airport shuttle which stops near 5 hotels, each passengers gets off the shuttle at his/her hotel. How many possibilities exist?

$$
\binom{5+10-1}{10}=\binom{5+10-1}{5-1}=\binom{14}{4}
$$

