Chinese Remainder Theorem (CRT)

Theorem 1. If $n_{1}, n_{2}, \ldots, n_{k}$ are pairwise co-prime integers and if $a_{1}, a_{2}, \ldots, a_{k}$ are any integers such that $0 \leqslant a_{i}<n_{i}$ for every $i=1,2, \ldots, k$, then the system of congruence equations

$$
\begin{gather*}
x \equiv a_{1} \quad\left(\bmod n_{1}\right) \\
x \equiv a_{2} \quad\left(\bmod n_{2}\right) \tag{1}\\
\quad \ldots \\
x \equiv a_{k} \quad\left(\bmod n_{k}\right)
\end{gather*}
$$

has a unqiue solution $0 \leqslant x<N$, where $N=\prod_{i=1}^{k} n_{k}$, such that $x \bmod n_{i}=a_{i}$ for every $i=$ $1,2, \ldots, k$.

Proof. Suppose that x and y are both solutions to (1). Then

$$
\forall i=1,2, \ldots, k: x \bmod n_{i}=y \bmod n_{i}=a_{i} \Longrightarrow n_{i} \mid x-y
$$

Since all n_{i} are pairwise co-prime, their product N also divides $x-y$, and hence $x \equiv y(\bmod N)$. Considering that x and y are nonnegative and less than N, the statement $N \mid x-y$ is true only if $x=y$. Hence, the solution to the system (1) is unique.

Theorem 2. A mappping $\varphi: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{Z} / n_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / n_{k} \mathbb{Z}$ defined by

$$
\varphi: a \bmod N \mapsto\left(a \bmod n_{1}, \ldots a \bmod n_{k}\right)
$$

is a ring-isomorphism.
Proof. First, we show that φ is bijective. Define an inverse mapping $\varphi^{-1}=\psi$ as

$$
\psi: \mathbb{Z} / n_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / n_{k} \mathbb{Z} \rightarrow \mathbb{Z} / N \mathbb{Z}
$$

by

$$
\psi:\left(a \bmod n_{1}, \ldots, a \bmod n_{k}\right) \mapsto a \bmod N .
$$

Then for all $\left(a \bmod n_{1}, \ldots, a \bmod n_{k}\right) \in \mathbb{Z} / n_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / n_{k} \mathbb{Z}$ and for all $b \bmod N \in \mathbb{Z} / N \mathbb{Z}$:

$$
(\varphi \circ \psi)\left(a \bmod n_{1}, \ldots, a \bmod n_{k}\right)=\varphi(a \bmod N)=\left(a \bmod n_{1}, \ldots, a \bmod n_{k}\right),
$$

$$
(\psi \circ \varphi)(b)=\psi\left(b \bmod n_{1}, \ldots, b \bmod n_{k}\right)=b \bmod N .
$$

Hence, $\varphi: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{Z} / n_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / n_{k} \mathbb{Z}$ is a bijection.
Next, we show that φ is an isomorphism (i.e., preserves operations). For all $a \bmod N, b \bmod N \in$ $\mathbb{Z} / N \mathbb{Z}$ it must hold that

$$
\begin{aligned}
& \varphi(a+b)=\varphi(a)+\varphi(b) \\
& \varphi(a \cdot b)=\varphi(a) \cdot \varphi(b)
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\varphi(a \bmod N+b \bmod N) & =\varphi(a+b \bmod N)=\left(a+b \bmod n_{1}, \ldots, a+b \bmod n_{k}\right) \\
& =\left(a \bmod n_{1}, \ldots, a \bmod n_{k}\right)+\left(b \bmod n_{1}, \ldots, b \bmod n_{k}\right) \\
& =\varphi(a \bmod N)+\varphi(b \bmod N) \\
\varphi(a \bmod N \cdot b \bmod N) & =\varphi(a b \bmod N)=\left(a b \bmod n_{1}, \ldots, a b \bmod n_{k}\right) \\
& =\left(a \bmod n_{1}, \ldots a \bmod n_{k}\right) \cdot\left(b \bmod n_{1}, \ldots, b \bmod n_{k}\right) \\
& =\varphi(a \bmod N) \cdot \varphi(b \bmod N)
\end{aligned}
$$

Hence, $\varphi: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{Z} / n_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / n_{k} \mathbb{Z}$ is a ring-isomorphism, and therefore

$$
\mathbb{Z} / N \mathbb{Z} \cong \mathbb{Z} / n_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / n_{k} \mathbb{Z}
$$

Corollary 1. $\mathbb{Z} / p q \mathbb{Z} \cong \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z}$. In other words, computing in $\mathbb{Z}_{p q}$ is the same as computing in $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$.

Theorem 3. Let n_{1}, n_{2} be co-prime integers and let a_{1}, a_{2} be any integers such that $a_{1}<n_{1}$ and $0 \leqslant a_{2}<n_{2}$. Then the solution to the system of congruence equations

$$
\begin{aligned}
& x \equiv a_{1} \quad\left(\bmod n_{1}\right) \\
& x \equiv a_{2} \quad\left(\bmod n_{2}\right)
\end{aligned}
$$

is

$$
x \equiv a_{1} m_{2} n_{2}+a_{2} m_{1} n_{1}
$$

where m_{1} and m_{2} are the coefficients of the Bézout identity $m_{1} n_{1}+m_{2} n_{2}=1=\operatorname{gcd}\left(n_{1}, n_{2}\right)$.
Proof. Indeed, considering that by the Bézout identity $m_{2} n_{2}=1-m_{1} n_{1}$,

$$
\begin{aligned}
x & =a_{1} m_{2} n_{2}+a_{2} m_{1} n_{1}=a_{1}\left(1-m_{1} n_{1}\right)+a_{2} m_{1} n_{1} \\
& =a_{1}+\left(a_{2}-a_{1}\right) m_{1} n_{1} \Longrightarrow x \equiv a_{1} \quad\left(\bmod n_{1}\right) .
\end{aligned}
$$

Similarly, by the Bézout identity, $m_{1} n_{1}=1-m_{2} n_{2}$, and hence

$$
\begin{aligned}
x & =a_{1} m_{2} n_{2}+a_{2} m_{1} n_{1}=a_{1} m_{2} n_{2}+a_{2}\left(1-m_{2} n_{2}\right) \\
& =a_{2}+\left(a_{1}-a_{2}\right) m_{2} n_{2} \Longrightarrow x \equiv a_{2} \quad\left(\bmod n_{2}\right)
\end{aligned}
$$

Theorem 4. Let $n_{1}, n_{2}, \ldots, n_{k}$ be pairwise co-prime integers and let $a_{1}, a_{2}, \ldots, a_{k}$ be any integers such that $0 \leqslant a_{i}<n_{i}$ for all $i=1,2, \ldots, k$, and let $N=n_{1} \cdot n_{2} \cdot n_{k}$. Then the solution of the system of congruence equations

$$
\begin{gathered}
x \equiv a_{1} \quad\left(\bmod n_{1}\right) \\
x \equiv a_{2} \quad\left(\bmod n_{2}\right) \\
\cdots \\
x \equiv a_{k} \quad\left(\bmod n_{k}\right)
\end{gathered}
$$

is

$$
x \equiv \sum_{i=1}^{k} a_{i} M_{i} N_{i} \quad(\bmod N)
$$

where $N_{i}=\frac{N}{n_{i}}$ and M_{i} is the Bézout coefficient satisfying $M_{i} N_{i}+m_{i} n_{i}=1=\operatorname{gcd}\left(N_{i}, n_{i}\right)$. Proof. As N_{j} is a multiple of n_{i} for $i \neq j$, it holds that

$$
\begin{aligned}
& x=\sum_{i=1}^{k} a_{i} M_{i} N_{i}=\underbrace{a_{1} M_{1} N_{1}}_{\equiv 0}+\ldots+a_{i} M_{i} N_{i}+\ldots+\underbrace{a_{k} M_{k} M_{k} N_{k}}_{\equiv 0} \\
& \equiv a_{i} M_{i} N_{i} \quad(\bmod n)_{i} \\
&\left.n_{i}\right)
\end{aligned}
$$

Since $\operatorname{gcd}\left(N_{i}, n_{i}\right)=1$, the Bézout identity $M_{i} N_{i}+m_{i} n_{i}=1$ applies, and hence $M_{i} N_{i}=1-m_{i} n_{i}$. And so

$$
x \equiv a_{i} M_{i} N_{i} \quad\left(\bmod n_{i}\right) \equiv a_{i}\left(1-m_{i} n_{i}\right) \quad\left(\bmod n_{i}\right) \equiv a_{i} \quad\left(\bmod n_{i}\right)
$$

