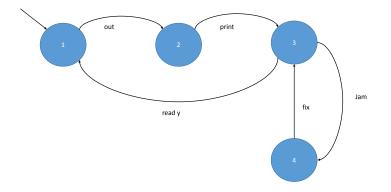
Hybrid Systems, Lecture 4: Automata

S. Nõmm

¹Department of Computer Science, Tallinn University of Technology

03.03.2015

Printer



Transition systems

- Q is the set of states. What is state?
- ► A is the set of labels.
- $\rightarrow \subset Q \times A \times Q$ is the set of transitions.
- Y is the set of observations (outputs).
- $\langle \cdot \rangle : Q \to Y$ observation (output) map.
- ▶ Q₀ is the set of initial states.

Definition

The elements of tuple $S = (Q, A, \rightarrow, Y, \langle \cdot \rangle, Q_0)$ define *transition* system S

If Q and A are finite, the transition system is called *finite*

Transition systems

- A transition between states q, q' ∈ Q with label a ∈ A is denoted q → q'
- If for some pair (q, a), Q ∈ Q and a ∈ A there exist more than one q' then the system is called *nondeterministic*

$$Q = \{1, 2, 3, 4\}$$

$$Q_0 = 1$$

$$A = \{out, print, ready, jap, fix\}$$

$$Y = \{normal, error\}$$

$$\langle 1 \rangle = \langle 2 \rangle = \langle 3 \rangle = normal$$

$$\langle 4 \rangle = error$$

Execution of the transition systems

- Let $S = (Q, A, \rightarrow, Y, \langle \cdot \rangle, Q_0)$ be a transition system.
- ▶ The sequence $q_0, a_0, q_1, a_1, \dots, q_{N+1}$ such that $q_i \in Q$, $i \in [1, N+1]$, $a_i \in A$, $i \in [1, N]$ is called an *execution* of the system S if $q_0 inQ$ and $q_i \stackrel{a_i}{\longrightarrow} q'_{i+1}, i \in [1, N]$
- For the given execution q₀, a₀, q₁, a₁,... q_{N+1} corresponding external trajectory is given by ⟨q₀⟩, a₀, ⟨q₁⟩, a₁,... ⟨q_{N+1}⟩.
- The collection of all possible external trajectories of the transition system is called the *language* of the system.

Automaton

- Q is the set of states. What is state?
- ► A is the set of labels.
- $\rightarrow \subset Q \times A \times Q$ is the set of transitions.
- ► Y is the set of observations (outputs).
- $\langle \cdot \rangle : Q \to Y$ observation (output) map.
- Q₀ is the set of initial states.
- Q_m is the set of marked states.

Definition

The elements of tuple $U = (Q, A, \rightarrow, Y, \langle \cdot \rangle, Q_0, Q_m)$ define Automaton system U

If Q and A are finite, the automaton U is called *finite state automaton*.

Definition of nondeterministic automaton is inherited from transition systems.

Execution of automata

- The notion of the execution is the same as for transition system.
- ► For the given execution q₀, a₀, q₁, a₁, ... q_{N+1} corresponding trace is given by a₀, a₁, ... a_N.
- ► The set of all possible traces is called generated language of the automaton U and denoted as L(U)

Regular Languages

- An alphabet A is a finite collection of symbols.
- ► The *string s* over alphabet *A* is the is a sequence of symbols of *A*.
- An empty string is denoted by ϵ
- ► The *length* of the string s is the number of elements is s, denoted by | s |. The length of the empty string is| e |= 0.
- ► A language *L* of the alphabet *A* is a collection of finite strings over *A*.

Regular Languages

- Let L_a and L_b be the alphabets over A. Concatenation of the languages L_aL_b = {s | ∃s_a ∈ L_a, s_b ∈ L_b, s = s_as_b}
- ► Let *L* be the language over the alphabet *A*. The prefix closure of L is defined as follows

$$\bar{L} = \{ s \mid \exists s' : ss' \in L \}.$$

Let L be the language over the alphaber A. Kleene closure of L is defined as follows:

$$L^* = \{\epsilon\} \cup L \cup LL \cup \ldots$$

Properties

- The state q is said to be accessible for the automaton U = (Q, A, →, Y, ⟨·⟩, Q₀, Q_m) if there exists an execution leading to this state.
- Let the automaton U = (Q, A, →, Y, ⟨·⟩, Q₀, Q_m) the automaton is *blocking* if

$$L_m(U) \neq L_m(U)$$