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Regression problem

I In classification problem we predict discrete class labels.

I In clustering problem we try to find hidden structure.

I In regression problem we predict continuous values.
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Example:

Set of cars data, recently put into sale on auto24.ee page.

Year Mileage Power Fuel Transmission Price

2009 144800 240 D A 25900
2004 12800 96 P M 4750
2003 229000 160 D A 9999
2005 161000 51 D M 1900
2008 220000 71 P M 4500
· · · · · · · · · · · · · · · · · ·

Goal: Learn to predict the price of the car from its properties.
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Example: Cars’ prices
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Linear hypothesis

The model for linear regression is a linear equation:

hθ(x) = θ0 + θ1x

θ0, θ1 ∈ R - model parameters

Our goal is to find a set of parameters that best fit to the data.
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Linear hypothesis

We train the model to find the best parameters. The trained model can be
used to make predictions on new data.

For example:

The trained model expressing the price of the car as a function of mileage
is:

hθ(x) = 15150− 45.6x

According to this model the car with the mileage 157600 km could be sold
with the price:

hθ(x) = 15150− 45.6× 157.6 ≈ 7963
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Generalization to n-dimensional data points

Usually the data points are real-valued vectors:

x = [x1, x2, · · · , xn]T , x1 · · · xn ∈ R

In this case the hypothesis is:

hθ(x) = θ0 + θ1x1 + θ2x2 + · · · θnxn
By defining x0 = 1 we can write:

hθ(x) =
n∑

j=0

θjxj = θTx,

where θ = [θ0, θ1, · · · , θn]T
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Notations

When we have m labelled training data points then they are denoted in
pairs:

(xi , yi ), i = 1 · · ·m

xi are n-dimensional real-valued vectors.
yi ∈ R is the true value or answer for the i-th data point.
X is called the design matrix, where each row is a data point.

X =


xT1
xT2
· · ·
xTm


Y is the column vector with correct answers.

Y = [y1, y2, · · · , ym]T
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Objective function

How to find the optimal parameters?

We wish to find parameters θ, such that the distances of all training data
point from the line θTx would be minimal.

Define the objective function:

Objective function is the sum of the squares of the distances from each
training point to the line determined by parameters θ:

J(θ) =
1

2

m∑
i=1

(yi − θTxi )
2

The linear regression with such an objective function is also called
Ordinary least squares regression.
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Ordinary least squares

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

5

 

 

prediction
truth

Kairit Sirts () Linear Regression 21.03.2014 13 / 30



Why squared cost-function?
We could have chosen just the absolute value of the distances or the
absolute value of the cubes etc.
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The squared function is convenient mathematically—it leads to a convex
objective function that is guaranteed to have only one optimum, which is
the global optimum.
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Model vs fitting the parameters

Now we have defined the model and the cost function.

We need to decide, how to fit the parameters, meaning: how to find the
parameters that minimize the cost function.

There are many ways for fitting the parameters. Most of the methods are
general and not specific to the model we are discussing.
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Fitting the parameters

I Iterative methods: Gradient Descent

I Analytical solution
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Method of Gradient Descent

I Iteratively updates the parameters. Each parameter is updated in the
direction of its negative gradient.

I Initialize the parameters randomly (for example, set to 0).

I For all θj (in parallel):

θ
(k+1)
j = θ

(k)
j − α

∂J(θ)

∂θj

I Continue until convergence

I α: learning rate, determines the length of the steps taken.

I Gradient descent is a first order method, because only uses first
derivatives.
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Gradient Descent in action

y = x2 + 5x y ′ = 2x + 5

x0 = 5 α = 0.2
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Gradient Descent for least squares

I Find the derivative of the objective function

∂J(θ)

∂θj
=

∂

∂θj

1

2
(hθ(x)− y)2

=
2

2
(hθ(x)− y)

∂

∂θj
hθ(x) = (hθ(x)− y)xj

I For the whole data set

∂J(θ)

∂θj
=

m∑
i=1

(hθ(xi )− yi )xij

I Update rule: for each θj simultaneously:

θk+1
j = θkj − α

m∑
i=1

(hθ(xi )− yi )xij

Kairit Sirts () Linear Regression 21.03.2014 19 / 30



Closed form solution

I Least squares linear regression can be also solved analytically
(because the objective function is convex)

I Express the objective function in matrix notation:

J(θ) =
1

2

m∑
i=1

(hθ(xi )− yi )
2 =

1

2

m∑
i=1

(θTxi − yi )
2

=
1

2
(Xθ − Y )T (Xθ − Y )

=
1

2
θT (XTX)θ − θT (XTY ) +

1

2
Y TY
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Closed form solution

I Find the derivative

∇θJ(θ) = ∇θ

(
1

2
θT (XTX)θ − θT (XTY ) +

1

2
Y TY

)
= XTXθ − XTY

I Set it to 0
XTXθ = XTY

I Solve for θ
θ = (XTX)−1XTY

I This is called the normal equation.
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Probabilistic interpretation of least squares

I ε is the residual error between predictions and true answers

y = hθ(x) + ε

I Residual error is commonly assumed to be Gaussian:

ε ∼ N (µ, σ2)

I Thus y can be interpreted as a random variable

p(y |x,θ) = N (y |µ(x), σ2(x))

I In the simplest case µ = θTx and noise σ2 is fixed.
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Probabilistic interpretation of least squares

I Use MLE and find the parameters that maximize the log-likelihood
(minimize the negative log-likelihood)

`(θ) = log p(X|θ) =
m∑
i=1

log p(yi |xi ,θ)

I The log-likelihood of the defined model is:

`(θ) =
m∑
i=1

log
1√

2πσ2
exp

(
−(yi − hθ(xi ))2

2σ2

)
= − 1

2σ2
RSS(θ)− m

2
log(2πσ2),

I where residual sum of squares RSS(θ) =
∑m

i=1 (yi − θTxi )
2
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Non-linear functions with linear regression

I Replace x with some non-linear mapping of the inputs φ(x):

hθ(x) = θTφ(x)

I This is called basis function expansion

I For example, polyomial regression has the basis function for some d :

φ(x) = [1, x , x2, . . . , xd ]

I The model is still linear in the parameters, so it is still called linear
regression.
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Polynomial regression

I Polynomial function has the global effect and thus with too large
degree leads to overfitting.

I The parameters are big numbers that balance out exactly to fit the
training data.
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Encouraging small weights

I We can encourage small parameters by using a zero-mean Gaussian
prior:

P(θ) =
∏
j

N (θj |0, τ2)

I Incorporating this into the log-likelihood yields:

`(θ) =
m∑
i=1

logN (yi |θTxi , σ
2) +

n∑
j=1

logN (θj |0, τ2)
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Regularized linear regression

I Adding priors to weights leads to minimizing the regularized
objective function:

J(θ) =
1

2

m∑
i=1

(yi − θTxi )
2 +

λ

2
‖θ‖22,

I where λ = σ2/τ2.

I The regularized linear regression is called ridge regression.

I Ridge regression normal equation has the form:

θridge = (λI− XTX)−1XTY

I In general, adding Gaussian prior to parameters is called `2
regularization.
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Effect of regularization
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Other types of regularizations

I The regularization can also use other norms

I `1 regularization is called lasso and leads to sparse solutions.
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Batch versus online learning

I Batch learning uses all the training data in each gradient descent
iteration

I With large datasets this makes learning computationally very costly.

I An alternative is to use an online learning algorithm - stochastic
gradient descent.

I With stochastic gradient update the parameters after observing every
datapoint in turn.
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