
Lecture 3
Module I: Model Checking
Topic: Property specification in

Temporal Logic CTL*

J.Vain
22.02.2018

1

Model Checking

M ⊨ P ?
Given

• M – model
• P – property to be checked on the model M
• ⊨ – satisfiability relation („M satisfies P“)

Check if M satisfies P

If M ⊨ P we say in logic that M is a model of formula P

2

Model: Kripke Structure (revisited I)

• KS is a state-transition system that captures
• what is true in a state (denoted as labeling of the state)
• what can be viewed as an atomic move (denoted as transition)
• the succession of states (paths on the model graph)

• KS is a static representation that can be unfolded to a
tree of execution traces on which temporal properties
are verified.

3

Representing transition as formuli

• In Kripke structure, transition (s, s’) ∈ R corresponds
to one step of program execution.

• Suppose a program has two steps
• x := (x+1) mod 3;
• y := (y+1) mod 3.

Then
R = {R1, R2}
• R1 : (x’ = (x+1) mod 3) ∧ (y’ = y)
• R2 : (y’ = (y+1) mod 3) ∧ (x’ = x)

4

x:=(x+1)mod 3

y:=(y+1)mod 3

Consecutive States

• State space:
we can restrict our attention to pairs of consecutive states s = (x, y)
and s’=(x’, y’) in the state space {0, 1, 2} × {0, 1, 2}, i.e.

s, s’ ∈ {0, 1, 2} × {0, 1, 2}

• Question: Can we construct a logic formula that describes the
relation between any two consecutive states s and s’?

• Assume each pair of consecutive states is an instance of R, e.g. in
set notation R = {R1, R2} and in logic notation R ⇔ (R1 or R2)

5

Consecutive states represented by R1 ∨ R2

6

1,0

2,1

0,0

1,1

2,2 0,2

Representing transitions (revisited II)
• In Kripke structure, a transition (s, s’) ∈ R corresponds to one step of

program execution.

• Suppose a program P has two steps
• x := (x+1) mod 3;
• y := (y+1) mod 3;

• For the whole program we have
R = ((x’ = x+1 mod 3) ∧ y’ = y) ∨ ((y’ = y+1 mod 3) ∧ x’=x)

• (s, s’) that satisfies R means that from state s we can get to s’ by some
step of execution that satisfies R.

7

A giant R

• We can compute R for the whole program
• then we will know whether any of states is one-step reachable

from some other

• Convenient, but globally we loose information:
e.g., the order in which the statements are executed

• Comment:
• without ordering, the disjuncts in R have not clear precedence!

8

Introducing program counter

• In the computer, the order of execution is controlled by program
counters.

• We introduce an auxilliary variable pc, and assume the program
commands are labeled with l0,… ,ln.

• For instance
• In the program:

• l0: x := x+1;
• l1: y := x+1;
• l2: …

• In the logic:
• R1 : x’= x+1 ∧ y’=y ∧ pc = l0 ∧ pc’= l1
• R2 : y’= y+1 ∧ x’=x ∧ pc =l1∧ pc’= l2

Now we have complete logic representation of program execution in
our computation model M!

9

Temporal logic CTL*

• Semantics
KS and its logic representation are static models of program execution

10

S1 S2

S3 S4

Dynamic model of program execution =
unfolding of the static model

Branching time: tree structure Linear time: traces

11

S1

S4

S1

S2

S3

S2 S4

Is a formula valid at a given
node, which represents a
subtree?

Is a formula valid
along a given path?

S1

S4

S1

S2

S3

S1

S2

S1

S2

S1

S2

S1

S4

CTL* (Computation Tree Logic)

• Covers both branching time and linear time logics
• Basic Operators

• X: neXt
• F: Future (〈〉)
• G: Global ([])
• U: Until
• R: Release

12

CTL*
• State formulas (are interpreted in states)

• Express properties of states
• Use path quantifiers:

• A – for all paths,
• E – for some paths

• Path formulas (are interpreted on paths)
• Expess properties of paths
• Use state quantifiers:

• G – for all states (of the path)
• F – for some state (of the path)

13

State Formulas (1)

•Atomic propositions:
• If p ∈ AP, then p is a state formula
• Examples: x > 0, odd(y)

•Propositional combinations of state formulas:
• ¬ ϕ, ϕ ∨ψ, ϕ ∧ψ …
• Examples:

• x > 0 \/ odd(y),
• req ⇒ (AF ack)

• “A” is a path quantifier
• “F ack” is a path formula
• “AF ack” is a state formula (interpreted in a state)

14

State Formulas (2)

• Quantifiers A and E make a state formula from a path
formula interpreted in the scope of A or E.

• Eϕ , where ϕ is a path formula, which expresses property of a path
• E means “there exists”
• E ϕ - ϕ is true on some path from this state on.

• A ϕ
• A means “for all paths“
• A ϕ - ϕ is true on all paths starting from this state.

15

Forms of Path Formulas

• A state formula ϕ
• ϕ is true in the first state of this path

• For path formulas ϕ and ψ, the path formulas are:
• ¬ ϕ, ϕ ∨ψ, ϕ ∧ ψ
• X ϕ, Fϕ, G ϕ, ϕ Uψ, ϕ Rψ

• X – next
• F – eventually
• G – globally
• U – until
• R – releases

16

Path Formulas (I): Next-operator

X ϕ, where ϕ is a path formula
• ϕ is valid for the suffix of this path (path minus the

first state)

Head of path

States:
- ϕ is true
- ϕ can be either true or false in other states

17

Suffix of path

Head of suffix

Path Formulas II: Eventually-operator

F ϕ:
ϕ is valid for this path

- ϕ is false
- ϕ is true
- ϕ can be either true or false

18

Suffix of the path

Head of path

Path Formulas (III): Globally-operator

• G ϕ
• ϕ is valid for head and every suffix of this path

19

Suffix of path

Head of path

- ϕ is true

Path Formulas IV: Until-operator

• ϕ Uψ
• ψ is valid on a suffix of the path, before the first

node of which ϕ is valid on every suffix thereon

20

- ϕ is true
-ψ is true
-ϕ and ψ are either true or false

Path Formulas (V): Release-operator

ϕ Rψ
• ψ has to be true until and including the point where ϕ

becomes true; if ϕ never becomes true then ψ must
remain true forever

1)

2)

21

- ϕ is true
- ψ is true
- ψ can be either true or false

ϕ never gets true

Formal semantics of CTL* (1)

• Notations
• M, s ⊨ ϕ iff ϕ holds in state s of model M

• M, π ⊨ ϕ iff ϕ holds along the path π in M
• πi : i-th suffix of π

• π = s0, s1, …, then π1 = s1, …

22

Semantics of CTL* (2)

• Path formulas are interpreted on paths:
• M, π ⊨ ϕ
• M, π ⊨ X ϕ
• M, π ⊨ F ϕ
• M, π ⊨ ϕ Uψ

23

Semantics of CTL* (3)

• State formulas are interpreted over a set of states (of a path)
• M, s ⊨ p
• M, s ⊨ ¬ ϕ
• M, s ⊨ E ϕ
• M, s ⊨A ϕ

24

CTL

• Quantifiers over paths
• A ϕ – All: ϕ has to hold on all paths starting from the current state.
• E ϕ – Exists: there exists at least one path starting from the current

state where ϕ holds.

• In CTL, path formulas can occur only when paired with A or E , i.e. one
state operator followed by a path operator.
if ϕ and ψ are state formulas, then

• X ϕ,
• F ϕ,
• G ϕ,
• ϕ Uψ,
• ϕ Rψ

are path formulas

25

LTL (contains only path formulas)

Path formulas:
 If p ∈ AP, then p is a path formula
 If ϕ and ψ are path formulas, then

¬ϕ
ϕ ∨ψ
ϕ ∧ψ
X ϕ
 F ϕ
G ϕ
ϕ Uψ
ϕ Rψ

are path formulas.

26

CTL vs. CTL*
• CTL*, CTL and LTL have different expressive powers:
• Example:

• In CTL there is no formula being equivalent to LTL formula
A(FG p).

• In LTL there is no formula equivalent to CTL formula AG(EF
p).

• A(FG p) ∨ AG(EF p) is a CTL* formula that cannot be
expressed neither in CTL nor in LTL.

27

Minimal set of CTL temporal operators

• Transformations used for mapping temporal operators to minimal set
of temporal operators {EU, EF, EG}:

• EF ϕ == E [true U ϕ] (because F ϕ == [true U ϕ])
• AX ϕ == ¬ EX(¬ ϕ)
• AG ϕ == ¬ EF(¬ ϕ) == ¬ E [true U ¬ϕ]
• AF ϕ == A [true U ϕ] == ¬ EG ¬ ϕ
• A[ϕ Uψ] == ¬(E[(¬ ψ) U ¬(ϕ ∨ ψ)] ∨ EG (¬ψ))

28

Summary

• CTL* is general temporal logic that offers strong
expressive power, more than CTL and LTL separately.

• CTL and LTL are practically useful enough; CTL* helps
to understand the relations between LTL and CTL.

• In the next lecture we will show how to check
satisfiability of CTL formuli on Kripke structures.

29

	Lecture 3�Module I: 	Model Checking �Topic: 		Property specification in 				Temporal Logic CTL*
	Model Checking
	Model: Kripke Structure (revisited I)
	Representing transition as formuli
	Consecutive States
	Consecutive states represented by R1 ∨ R2
	Representing transitions (revisited II)
	A giant R
	Introducing program counter
	Temporal logic CTL*
	Dynamic model of program execution = unfolding of the static model
	CTL* (Computation Tree Logic)
	CTL*
	State Formulas (1)
	State Formulas (2)
	Forms of Path Formulas
	Path Formulas (I): Next-operator
	Path Formulas II: Eventually-operator
	Path Formulas (III): Globally-operator
	Path Formulas IV: Until-operator
	Path Formulas (V): Release-operator
	Formal semantics of CTL* (1)
	Semantics of CTL* (2)
	Semantics of CTL* (3)
	CTL
	LTL (contains only path formulas)
	CTL vs. CTL*
	Minimal set of CTL temporal operators
	Summary

