Lecture 3 Topic:

Module I: Model Checking Property specification in Temporal Logic CTL*

> J.Vain 22.02.2018

Model Checking

 $M \models P$?

Given

- *M* model
- *P* property to be checked on the model *M*
- ⊨ satisfiability relation ("*M satisfies P"*)

Check if M satisfies P

If $M \models P$ we say in logic that M is a model of formula P

Model: Kripke Structure (revisited I)

• KS is a state-transition system that captures

- what is true in a state (denoted as labeling of the state)
- what can be viewed as an atomic move (denoted as transition)
- the succession of states (paths on the model graph)
- KS is a static representation that can be unfolded to a *tree of execution traces* on which temporal properties are verified.

Representing transition as formuli

• In Kripke structure, transition $(s, s') \in R$ corresponds to one step of program execution.

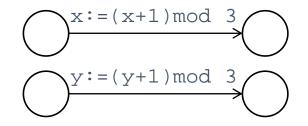
Suppose a program has two steps

- $x := (x+1) \mod 3;$
- y := $(y+1) \mod 3$.

Then

 $R = \{R_1, R_2\}$

- R_1 : ($x' = (x+1) \mod 3$) \land (y' = y)
- R_2 : $(y' = (y+1) \mod 3) \land (x' = x)$



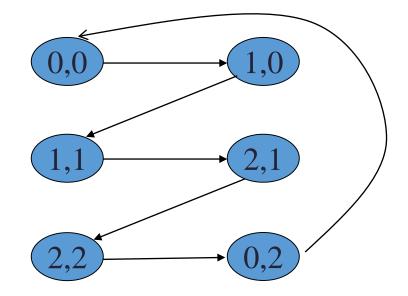
Consecutive States

• State space:

we can restrict our attention to pairs of consecutive states s = (x, y)and s'=(x', y') in the state space $\{0, 1, 2\} \times \{0, 1, 2\}$, i.e. $s, s' \in \{0, 1, 2\} \times \{0, 1, 2\}$

- Question: Can we construct a logic formula that describes the relation between <u>any</u> two consecutive states *s* and *s*'?
- Assume each pair of consecutive states is an instance of R, e.g. in set notation $R = \{R_1, R_2\}$ and in logic notation $R \Leftrightarrow (R_1 \text{ or } R_2)$

Consecutive states represented by $R_1 \vee R_2$



Representing transitions (revisited II)

- In Kripke structure, a transition (*s*, *s*') ∈ *R* corresponds to one step of program execution.
- Suppose a program *P* has two steps
 - $x := (x+1) \mod 3;$
 - $y := (y+1) \mod 3;$
- For the whole program we have

 $R = ((x' = x+1 \mod 3) \land y' = y) \lor ((y' = y+1 \mod 3) \land x' = x)$

• (*s*, *s*') that satisfies *R* means that from state *s* we can get to *s*' by some step of execution that satisfies *R*.

A giant R

- We can compute R for the whole program
 - then we will know whether any of states is one-step reachable from some other
- Convenient, but globally we loose information: e.g., the order in which the statements are executed

• Comment:

• without ordering, the disjuncts in *R* have <u>not clear precedence</u>!

Introducing program counter

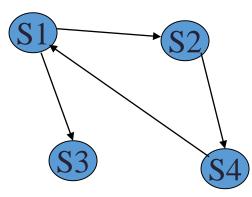
- In the computer, the order of execution is controlled by *program counters.*
- We introduce an auxilliary variable pc, and assume the program commands are labeled with $l_0, ..., l_n$.
- For instance
 - In the program:
 - $l_0: x := x+1;$
 - l₁: y := x+1;
 - 1₂: ...
 - In the logic:
 - $R_1: x'=x+1 \land y'=y \land pc = l_0 \land pc'=l_1$
 - R_2 : $y'=y+1 \land x'=x \land pc = l_1 \land pc'=l_2$

Now we have complete logic representation of program execution in our computation model *M*!

Temporal logic CTL*

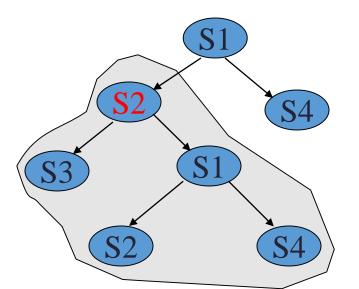
Semantics

KS and its logic representation are static models of program execution

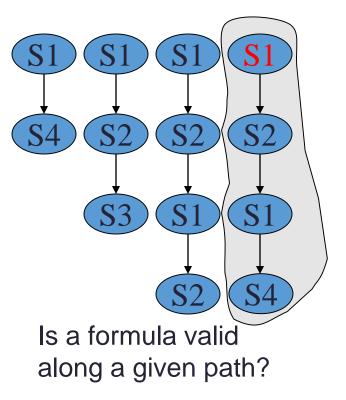


Dynamic model of program execution = unfolding of the static model

Branching time: tree structure



Is a formula valid at a given node, which represents a subtree? Linear time: traces



CTL* (Computation Tree Logic)

([])

- Covers both branching time and linear time logics
- Basic Operators
 - X: neXt
 - F: Future $(\langle \rangle)$
 - G: Global
 - U: Until
 - R: Release

CTL*

- State formulas (are interpreted in states)
 - Express properties of states
 - Use path quantifiers:
 - A for all paths,
 - E for some paths
- Path formulas (are interpreted on paths)
 - Expess properties of paths
 - Use state quantifiers:
 - G for all states (of the path)
 - F for some state (of the path)

State Formulas (1)

- Atomic propositions:
 - If $p \in AP$, then p is a state formula
 - **Examples:** *x* > 0, *odd*(*y*)
- Propositional combinations of state formulas:
 - $\neg \varphi, \varphi \lor \psi, \varphi \land \psi \dots$
 - Examples:
 - $x > 0 \lor odd(y)$,
 - $req \Rightarrow (AF ack)$
 - "A" is a path quantifier
 - "F *ack*" is a path formula
 - "AF *ack*" is a state formula (interpreted in a state)

State Formulas (2)

• Quantifiers A and E make a state formula from a path formula interpreted in the scope of A or E.

• $\mathrm{E} \varphi$, where φ is a path formula, which expresses property of a path

- E means "there exists"
- E φ φ is *true* on some path <u>from this state on</u>.
- A *\varphi*
 - A means "for all paths"
 - A φ φ is *true* on all paths starting <u>from this state</u>.

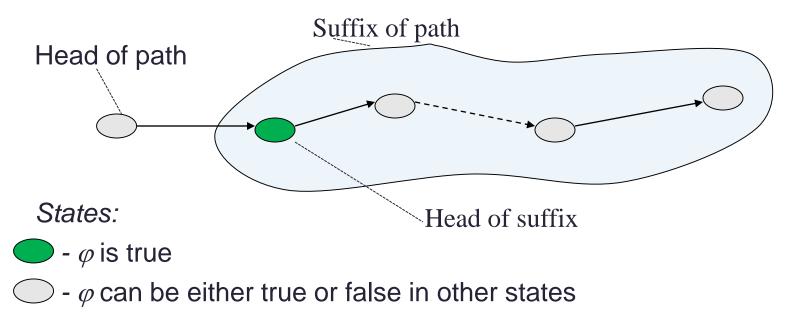
Forms of Path Formulas

- A state formula φ
 - φ is true in the <u>first state</u> of this path
- For path formulas φ and ψ , the path formulas are:
 - $\neg \varphi, \quad \varphi \lor \psi, \quad \varphi \land \psi$
 - $X \varphi$, $F \varphi$, $G \varphi$, $\varphi U \psi$, $\varphi R \psi$
 - X next
 - *F* eventually
 - G-globally
 - U-until
 - *R releases*

Path Formulas (I): Next-operator

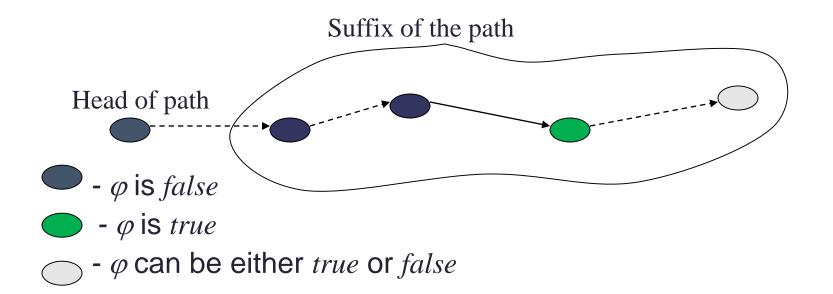
X φ , where φ is a path formula

• φ is valid for the suffix of this path (path minus the first state)



Path Formulas II: Eventually-operator

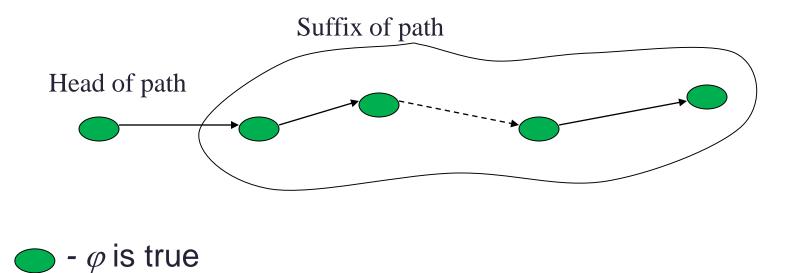
F φ : φ is valid for this path



Path Formulas (III): Globally-operator

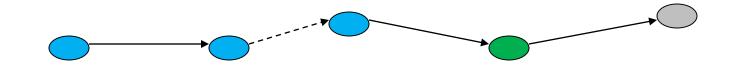
• G *\varphi*

• φ is valid for head and every suffix of this path



Path Formulas IV: Until-operator

- $\varphi U \psi$
 - ψ is valid on a suffix of the path, before the first node of which φ is valid on every suffix thereon



 \frown - φ is true

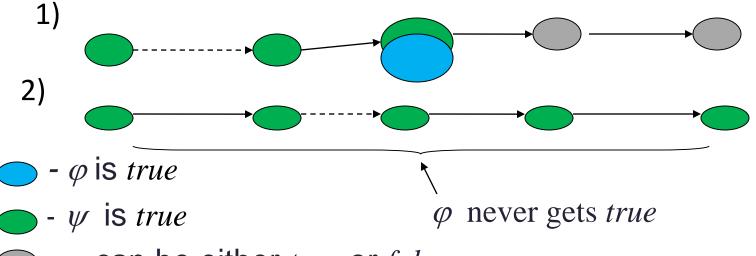
 \bigcirc - ψ is true

 \bigcirc - ϕ and ψ are either true or false

Path Formulas (V): Release-operator

$\varphi \,\mathsf{R} \psi$

 ψ has to be *true* until and including the point where φ becomes *true*; if φ never becomes *true* then ψ must remain *true* forever



 \bigcirc - ψ can be either *true* or *false*

Formal semantics of CTL* (1)

Notations

- $M, s \vDash \varphi$ iff φ holds in state s of model M
- $M, \pi \vDash \varphi$ iff φ holds along the path π in M
- π^i : *i*-th suffix of π
 - $\pi = s_0, s_1, \dots, \text{ then } \pi^1 = s_1, \dots$

Semantics of CTL* (2)

• Path formulas are interpreted on paths:

- M, $\pi \vDash \varphi$
- $M, \pi \vDash X \varphi$
- $M, \pi \vDash F \varphi$
- $M, \pi \vDash \varphi U \psi$

Semantics of CTL* (3)

• State formulas are interpreted over a set of states (of a path)

- $M, s \models p$
- *M*, $s \models \neg \varphi$
- *M*, $s \models E \varphi$
- *M*, $s \models A \varphi$

CTL

- Quantifiers over paths
 - $A \ \varphi$ **A**II: φ has to hold on all paths starting from the current state.
 - $E \ \varphi$ Exists: there exists at least one path starting from the current state where φ holds.
- In CTL, path formulas can occur only when paired with A or E, *i.e.* one state operator followed by a path operator.

if $\varphi\,$ and $\psi\, {\rm are}\,$ state formulas, then

- X φ,
- F φ,
- G φ,
- *φ Uψ*,
- $\varphi R \psi$

are path formulas

LTL (contains only path formulas)

Path formulas:

- If $p \in AP$, then p is a path formula
- If φ and ψ are path formulas, then
 - $\neg \varphi$ $\phi \lor \psi$
 - $\phi \wedge \psi$
 - **X**φ
 - **F** φ
 - **G** φ
 - ▶*φUψ*
 - ▶*φRψ*

are path formulas.

CTL vs. CTL*

- CTL*, CTL and LTL have different expressive powers:
- Example:
 - In CTL there is no formula being equivalent to LTL formula A(FG p).
 - In LTL there is no formula equivalent to CTL formula AG(EF *p*).
 - $A(FG p) \lor AG(EF p)$ is a CTL* formula that cannot be expressed neither in CTL nor in LTL.

Minimal set of CTL temporal operators

- Transformations used for mapping temporal operators to minimal set of temporal operators {*EU*, *EF*, *EG*}:
 - $EF \varphi == E [true \ U \ \varphi]$ (because $F \varphi == [true \ U \ \varphi]$)
 - $AX \varphi == \neg EX(\neg \varphi)$
 - $AG \ \varphi == \neg EF(\neg \varphi) == \neg E \ [true \ U \neg \varphi]$
 - *AF* $\varphi == A [true \ U \ \varphi] == \neg EG \neg \varphi$
 - $A[\varphi U\psi] == \neg (E[(\neg \psi) U \neg (\varphi \lor \psi)] \lor EG (\neg \psi))$

Summary

- CTL* is general temporal logic that offers strong expressive power, more than CTL and LTL separately.
- CTL and LTL are practically useful enough; CTL* helps to understand the relations between LTL and CTL.
- In the next lecture we will show how to check satisfiability of CTL formuli on Kripke structures.