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What Are Epistemic Logics?

Logics  used to reason about    Knowledge and Belief

---Logics of Knowledge

---Logics of Belief
                            
                  and their extensions



What is Reasoning about Knowledge?

• Reasoning about how agents use  knowledge
•       --  how they reason with their knowledge
•       --  how they reason with partial knowledge

[  Pierre doesn’t know the directions to Lyon,
       but does know the number of the automobile club   ]

Does  not     include
   Knowledge-based systems  et. al.
      which use   knowledge (facts) , but don’t  reason about  it



         Aim of Tutorial

--- motivate the problem

--- introduce concepts, vocabulary

--- examine major issues

--- point to tools, applications



• Inherently important ---
central concern of philosophy, psychology

        ---  how do agents acquire knowledge (Theaetetus) ?
        --   what is the relation between knowledge and belief ?
        --   do agents know all the consequences of their knowledge ?
        --   how do you explain inconsistent beliefs ?

•    Important for applications
 ---  AI applications :  
             planning, speech act theory, CAI
 ---  Other CS applications:
             distributed systems,  security
 ---   Applications outside AI:
              economics        

Why do we want to reason about knowledge and belief?



AI Applications

• Planning
• Text Understanding
• Active Perception
• Speech Acts
• Intelligent Computer Aided Instruction
• Design of Intelligent Systems
• Nonmonotonic Logic



Planning

--  In perfect world  (complete knowledge)
     planning can be done
                without reasoning about knowledge

AI Applications

   --   Real world  ----    incomplete knowledge
           so planning agent must reason

 does agent have enough knowledge to 
         perform action?
  does other agent know enough to do action?

Knowledge Preconditions Problem for  Actions and Plans
         



From the New York Times,  Metropolitan Diary,  Nov. 27, 1991

Dear Diary:

   This is what happened the other day.
    Richard locked himself out of his West Fourth Street apartment.  The super
wasn’t around.  Two hours later, Richard was still waiting in his lobby.  Then 
Mary Anne, an upstairs neighbor, came home.  She didn’t have the keys to
Richard’s apartment, but she had keys to Carol’s apartment next door to her.
And Carol, she knew, had keys to Lydia’s apartment on the floor below.  And
Lydia, Richard knew, had keys to his apartment.

   So Mary Anne used her keys to get into Carol’s apartment where she found a
set of keys labeled “Lydia.”  Then Mary Anne and Richard went to Lydia’s
apartment where Richard was certain he would find the keys to his apartment.
And so he did.  A few minutes later he was unlocking his own door.

    There’s a moral here someplace,  maybe about good neighbors, maybe about
New York apartment dwellers.  On the other hand, it could be a question.
Like, didn’t Lucy and Ethel have it easy?

The Moral:  
Intelligent agents reason about knowledge and action



Active Perception
AI Applications

[Having intelligent control for the focus of  the sensor]

Using knowledge of sensor characteristics and of 
        external world,
   Predict that a given focus for the sensor will gather
         a desired piece of knowledge

“I can find out what I  need to know
      -- for planning
      -- for physical prediction
      -- for disambiguating my perceptual interpretations
   by focussing my camera 10 degrees to the right”
--  I can determine whether my wallet is in my pocket
          by feeling in my pocket
--  I can determine whether a region is a mark or a shadow
          by looking for the object casting the shadow



Speech Acts  (Grice)

---   modelling communication, use of language

AI Applications

--explains how
    “la neige est blanche”     means  snow is white
      [in contrast to
             “These clouds mean rain” ]  

-- explains why
“Dear Sir,
     Mr. X has an excellent command of English and
     always comes to class”
 is a bad letter of recommendation

based on  convention ;  common knowledge of what
a sentence means

conversational implicature ;  our expectations and knowledge



Intelligent CAI
(Computer Aided Instruction)

        Create Automated Tutor
Ideally

Would maintain a model of
     -- what the student knows
     -- how the student reasons
     -- how the student learns
 Can initialize the model from
     -- generic model of students
     -- specific student data (e.g. tests)

 Can update the model from knowing
     -- what the student has been taught
     --  how the student responds

  Can plan an effective teaching strategy



Design of Intelligent Systems

Automate the construction of a  specialized AI system

  Given a specification of

       --  the kind of knowledge that the system has
       --  the evolution of the system’s knowledge
       --  the proper action of the system in a given state of
                                                                             knowledge

Design a knowledge-base architecture that implements this



    

Saracens
Byzantines  A Byzantines B

Byzantines must coordinate attack;
     otherwise, they’ll be defeated

Distributed Systems:
     Byzantine Generals



Distributed Systems:
  Byzantine Generals

• 2 Byzantine armies on opposite sides of Saracen army
• If both Byz. armies attack simultaneously, they win
• If only one attacks at a time, they’ll be defeated

Objective: To decide on a time of simultaneous attack
                   by sending messages back and forth
Difficulty:  The general sending the messenger 
                  can’t be sure that he will get through

Question:   How long until they can coordinate an attack?

Theorem:   There is no protocol which enables both generals
                   to be sure that the other will attack

Relevance:  components in computer system where
                     messages don't always get through



Application:   Distributed Systems
Given:  A collection of nodes connected as a free tree.
   Task:  To impose a directed tree structure
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Each node knows the general rules:
If u borders v then either u = parent(v) or v = parent(u);
The root has no parent; all other nodes have exactly 1 parent.

Supports variety of information transmission patterns:
• Assign one node to be root: info spreads from root
• Assign n-1 nodes to root; info spread up from leaves

Protocol for u:  if you border v, and you know your relation
to v, communicate this to v.



Applications of Epistemic Logic
in General CS

Distributed Systems

Characterize a protocol for a distributed system
             in terms of

--What each element knows
--What each element wants to know
--What each element knows about what other elements  know
--What is known by the union of all elements
--What is common knowledge throughout the system



Security

Guarantee that someone who does not know P (password)
      cannot find out Q (information)

 Convince another agent that I know a solution to problem P
        without letting him know the solution

 
(Public key encryption, zero-knowledge proofs)



Applications of Epistemic Logic
outside CS

GAME THEORY:  (Partial knowledge games - Bridge, Poker)

Determine the likely action of the opponent
                    based on his knowledge
Use one’s knowledge effectively without revealing its source

ECONOMICS:

 Determine the expected cost and value 
        of a particular piece of knowledge



                     OUTLINE• What are epistemic logics?
• Why are they interesting ?
                   --- AI Applications
•  Representing knowledge
                      --- Modal Logics
                              --Syntax
                              --Semantics
                                   state-based definition, possible
worlds
                              --Extensions
                                    quantification, time
                              --Applications
                                    3 Wise Men, Byzantine
Agreement
                              --Problems
                       --- Syntactic Logics
                              --Syntax and Semantics
                              -- Advantages and Disadvantages:
Paradox
                              -- Resolution to Paradoxes
                       --- Additional Issues
                              --Dropping Consequential Closure
                              --Nonmonotonic Logics
• Using Representations
                       --- automated reasoning



Important issues not covered here:

• connection of knowledge to other propositional
  attitudes:  belief, hope, fear, desire

•  [nonmonotonic and] probabilistic inference

•  knowledge and perception

•  natural language use of “know”



      Representing Knowledge                 
                      --- Modal Logics
                              --Syntax
                              --Semantics
                                   state-based definition, possible worlds
                              --Extensions
                                    quantification, time
                              --Applications
                                    3 Wise Men, Byzantine Agreement
                              --Problems
                       --- Syntactic Logics
                              --Syntax and Semantics
                              -- Advantages and Disadvantages: Paradox
                              -- Resolution to Paradoxes
                       --- Additional Issues
                              --Dropping Consequential Closure
                              --Nonmonotonic Logics



Representing Knowledge

How do we talk about knowledge?
LOGIC ---

    Extending standard logic into logic of knowledge

Starting point:  Propositional Logic

Propositions:  P   Q    R
Connectives:   ~   v    &     ==>   <==>

Examples:
   Temp = 25
    Frog-Kermit     v     Temp = 25
    Frog-Kermit  ==>  Green-Kermit

Note:  no way to talk about knowledge



  Extending Propositional Logic
     to Modal Logic of Knowledge
Add modal operator Know     (applies to sentences)

Examples:

Know(Frog-Kermit)
Know(Frog-Kermit   v    ~  Frog-Kermit)
Temp = 25   &  ~ Know(Temp = 25)
Know( ~ Know(Frog-Kermit))            [nested knowledge]

Implicit agent; can make explicit

Know(Beth, Temp = 25)
Know(Sally, Frog-Kermit  ==>  Green-Kermit)
Know(Sally, Know(Beth, Temp = 25))      [nested knowledge]



Note:  difficulty in representing knowledge

Referential Opacity
Most predicates are transparent ;
  you can substitute equals for equals.

John is the father of William
Color-of-eyes(John, Brown) is true just in case
Color-of-eyes(father(William),Brown) is true

Not true of Know

Scott is the author of Waverly --- but
Know(British(Scott)) may be true and
Know(British(author(Waverly)) may be false.

Also, the Morning Star is the same as the Evening Star
But Know(MorningStar = MorningStar) is true of all;
But Know(MorningStar = EveningStar) is  not.
                   Know is Opaque



Modal Logic of Knowledge:
      Multiple Agents

Mutual Knowledge
   2 or more agents know some fact
       
   A and B mutually know P iff
      Know(A,P)  &   Know(B,P)

Common Knowledge
 2 or more agents know some fact and
   they know that they know,  and so on ...

A and B have common knowledge of P iff
  Know(A,P) and Know(B,P) and
   Know(A, Know(B, Know(A,      ......  P]
   Know(B, Know(A, Know(B,      ......  P]

very important
for distributed 
systems!



How can we define  the Know
operator?

Intuitive definition of Know:

--- whatever is explicitly stated in a knowledge base

--- implicit knowledge in a propositional knowledge base

---  what can be derived

implicit knowledge definition is most accepted

We need to write down axioms to capture this concept of
      knowledge



[Possible] Axioms on Knowledge

1.  Veridicality
         If A knows P, then P is true
 2. Consequential Closure
         If A knows P 1 ... and A knows P n and P1 ... Pn |- Q
             then  A knows Q

 3. Knowledge of Necessary Truths
         If P is necessarily true, then A knows P

4. Positive Introspection
        If A knows P then A knows that A knows P
5. Negative Introspection
        If A does not know P, then he knows 
                  that he does not know P



1.  Veridicality
         If A knows P, then P is true
 2. Consequential Closure
         If A knows P 1 ... and A knows P n and P1 ... Pn |- Q
             then  A knows Q

 3. Knowledge of Necessary Truths
         If P is necessarily true, then A knows P

Different subsets of these axioms
   form different systems of modal logic

   ==     T,  a simple modal logic of knowledge



1.  Veridicality
         If A knows P, then P is true

 2. Consequential Closure
         If A knows P 1 ... and A knows P n and P1 ... Pn |- Q
             then  A knows Q

 3. Knowledge of Necessary Truths
         If P is necessarily true, then A knows P

4. Positive Introspection
        If A knows P then A knows that A knows P

==  S4,   popular modal logic of knowledge



1.  Veridicality
         If A knows P, then P is true

 2. Consequential Closure
         If A knows P 1 ... and A knows P n and P1 ... Pn |- Q
             then  A knows Q

 3. Knowledge of Necessary Truths
         If P is necessarily true, then A knows P

4. Positive Introspection
        If A knows P then A knows that A knows P

5. Negative Introspection
        If A does not know P, then he knows 
                  that he does not know P

==  S5,  modal logic for ideal knowledge



 2. Consequential Closure
         If A believes P 1 ... and A believes P n and P1 ... Pn |- Q
             then  A believes Q

 3. Knowledge of Necessary Truths
         If P is necessarily true, then A believes P
4. Positive Introspection
        If A believes P then A believes that A believes P

5. Negative Introspection
        If A does not believe P, then he believes 
                  that he does not believe P

Note:  an agent’s beliefs are not necessarily true

== weak S5, better suited for belief



What does Know   mean?
When can we say that a sentence like
    Know(John, temp = 25)  

  is true?

Several characterizations:

    --    state-based
    --    possible-worlds semantics



State-based definition of knowledge

Consider a device D that can be in one of a collection of states.
We say:   D knows P 
   if    the state of D is S    and
         whenever D is in state S,  P is true

Examples:

  D:   a mercury thermometer        S:  the level of mercury

D knows temperature is 25C
   because mercury points to 25C and
                   mercury only points to 25C when it is 25C

D knows temperature is  not 0C 
   because because temp. is never 0 when mercury is at 25C

 [good for a machine]



State-based definition of knowledge, cont.

Also ....

D  knows that the temperature > 5C and < 100C
D knows that the temperature in degrees C is a square number
D knows that any planar map can be colored with 4 colors
D kows that either the sun is shining or it is not shining

And ...

D does not know that the sun is shining
   because sometimes mercury points to 25 when it rains



State-based definition of knowledge

Other examples:

D :  an inventory database    
S :  relation instance in the database

D knows that there are 5 widgets on the shelf

D knows that there are fewer than 8 widgets on the shelf



State-based definition of knowledge
Combined knowledge

Devices D1 and D2 together know P if
    the state of D1 is S1
    the state of D2 is S2
    whenever the state of D1 is S1 and the state of D2 is S2,
        P is true

Example:
D1: an inside thermometer    D2: an outside thermometer

D1 and D2 together know it’s colder outside than inside
   because D1’s mercury points to 22
                   D2’s mercury points to 10   
   whenever D1’s mercury is at 22 and D2’s mercury is at 10,

                   it’s colder outside than inside



 Combined Knowledge:  
     Example

D1:  device in store that keeps track of purchases
D2:  device in store that keeps track of incoming orders

 D1 and D2 together knows that there are 10,000 items
                                                                   in the store
   because D1 indicates 30,000 items have been purchased
                  D2 indicates  40,000 items have come in
                                                                                     



State-based definition of knowledge
    Common Knowledge

Devices D1 and D2 have common knowledge of P iff
  state of D1 is an element of some set of states SS1
  state of D2 is an element of some set of states SS2
  whenever state of D1 is in SS1,
        P is true and the state of D2 is in SS2
  whenever state of D2 is in SS2,
        P is true and the state of D1 is in SS1

Example:
  D1:  a digital clock that displays hour and minute
  D2:  a digital clock that displays only the hour

D1 and D2 have common knowledge that time is 
     between 12:00 and 1:00 iff
   SS1 = the set of all displays 12:xx on D1
   SS2 = the set of D2 displaying 12:00



Applications of the State-based Definition:
     Distributed Systems

Let P =  “Printer 0 is free”

 Machine M1 knows p iff
    the internal state of M1 is attained only when P is true.

M1 communicates P to M2 through message C if
  M1 only sends C to M2 when M1 knows P and
  Whenever M2 receives C from M1, it enters a state where
                    M2 knows P

M2 knows that M1 knows P if:
   whenever M2 is in its current internal state,
   internal state of M1 is one only attained when P is true
Protocol: rules of the form --
                   if Mx knows Pk, Mx  communicates Cxyk to My

 Verify concepts of protocols such as:  if P true, then in
  5 cycles, every machine will know that P is true



State-based definition of knowledge
       What properties hold?

Important result:

Get:   veridicality

          consequential closure

          necessary truths

          positive introspection

          negative introspection

 That is, we get the modal logic S5  (perfect knowledge)



Problems with
     State-based definition of knowledge

---  fine for machines;  
     unintuitive definition for intelligent agents

---  consequential closure:
       all agents are perfect reasoners

---  necessary truths:
        all agents know all axioms   (universal facts)

---  negative introspection:
        agents never have false beliefs

built into the semantics



Possible Worlds Definition of Knowledge
Kripke-Hintikka

idea:  A knows P iff 
           P is true in all worlds that are knowledge-accessible
              for A

Beth knows Kermit is green if he is green in all
     worlds that are knowledge-accessible to Beth

W1 is knowledge-accessible from W 0 for A iff  W 1 is 
consistent with everthing A knows in W 0 ; that is,
for all A knows in W 0, he might as well be in W 1 
  

On the other hand, if in some knowledge-accessible world,
  Kermit is yellow, Beth doesn’t know that Kermit is green

True(W 0, Know(A,P)) iff 
           forall W 1 K(a,W0,W1) ==> True(W1,P)



Possible Worlds:
    Example:

Beth  knows that Kermit is green
(since Kermit is green is all words that are knowledge
  accessible to Beth from W 0)

W0



Possible Worlds:
    Example:

Beth doesn’t know whether Kermit is green
(since Kermit is green in some worlds; yellow in others)

W0



Possible Worlds:
    Example:

W0

P
P==>Q
Q

P
P==>Q
Q

P
P==>Q
Q

P
P==>Q
Q

P
P==>Q
Q P

P==>Q
Q

P
P==>Q
Q

P
P==>Q
Q

Know(a,P)
Know(a,P==>Q)
Therefore
Know(a,Q)

because Q is true in all
worlds where P and P==>Q
are true

Agents always know the consequences of their knowledge !!



Possible Worlds:
    Example:

W0

a2 + b2 = c2

a2 + b2 = c2
a2 + b2 = c2

a2 + b2 = c2

a2 + b2 = c2

a2 + b2 = c2

a2 + b2 = c2

a2 + b2 = c2

a2 + b2 = c2

Since Pythagorean theorem is true in all worlds,
Beth knows it   (even if she’s 5 years old)

Agents know all
axioms and theorems



W0

Possible Worlds
     Semantics

Note:  Different  modal logics (subsets of axioms)
correspond to properties of the knowledge accessibility
    relation 



W0

Possible Worlds
     Semantics

No restrictions:
   Just get consequential closure and necessary truths
        (weak T)



W0

Possible Worlds
     Semantics

If K is reflexive,  we get :
    veridicality,  consequential closure,  necessary truths
           (T)



W0

Possible Worlds
     Semantics

If K is reflexive   and transitive we get :
    veridicality,  consequential closure,  necessary truths,
     and positive introspection,  (S4)
           



W0

Possible Worlds
     Semantics

If K is reflexive,  symmetric, and transitive we get :
    veridicality,  consequential closure,  necessary truths,
    positive introspection, and negative introspection (S5)
           



Problems with
    Possible Worlds definition of Knowledge

--- Is “knowledge-accessible” any more
     intuitive than knowledge?

--- Consequential closure:
      all agents are perfect reasoners

--- Necessitation:
       all agents know all axioms   (universal facts)

Built into the semantics; can’t take these out

 [restricts us to a very small class of modal logics]



Extending Logics of Knowledge

Some Directions for Extensions:

--  Adding quantification
         Quantifying into epistemic contexts

--  Adding the concept of time

--  Dropping “perfect reasoner” assumption
        (consequential closure)



Adding Quantification
Before base logic was propositional logic

Extending Logics of Knowledge

     Q  =   It’s cold outside
      P       P & Q      P  v  Q     ~ P    P  ==> Q

 e.g.  P  =  There’s snow on the ground

   Know (John,  ~P)        Know(John,  P ==> Q)

Now base logic is predicate logic
 
(     x) (Man(x)  ==>  Mortal(x)) 
  ( ∃∃x) (Green(x))
Know(Beth, Blue(Toyota22))
Know (Susan, (      x) (Man(x)  ==>  Mortal(x))



Quantifying into Epistemic
Contexts

Extending Logics of Knowledge

Consider the following sentence:

John knows someone is blackmailing him

2 possible readings:

Second reading more fit if 
 John knows who is blackmailing him

Note:  2. implies 1.,  but 1.  does not imply 2

1.  Know(John, ∃∃x  Blackmailer(x,John))    (de dicto)
2.  ∃∃x (Know(John, Blackmailer(x,John)))   (de re)



Quantifying into Epistemic
Contexts

• When can we say

Extending Logics of Knowledge

∃∃x(Know(John ,φφ(x))
[ ∃∃x (Know(John, Blackmailer(x))) ]

We can deduce it from

Know(John, Blackmailer(Mr.Thorpe, John))

but not necessarily from

       Know(John, Blackmailer(Murderer(Sam), John)))

How much knowledge does John have to have  ?
      constant?  name?  rigid designator?



Adding the concept of time

Extending Logics of Knowledge

Till now:   no concept of time

 Know(Beth, Green(Kermit))

But -- facts of knowledge refer to time 
      People know different  things at different  times

 Know(Beth, President(USA, Clinton))

is meaningless
When is Clinton President?
When does Beth know this?

Need to add concept of time



Adding time to epistemic logics

Extending Logics of Knowledge

Many methods:
Adding extra temporal argument

Know(Beth, President(USA, Clinton, 1993)),  1993)

Know(Beth, President(USA, Bush, 1992)), 1993)

can imagine time as a total order   --- time line

   or as a partial order   ----    tree structure



Adding Time
How is knowledge affected by time?
 Perfect memory
    Know(A,P,S1) & S1 < S2  ==>  Know(A,P,S2)

Belief is also affected by time:

Changing your mind --
     if A believes P, he believes he’ll always believe P
    Bel(A,P,S1)   ==>
     Bel(A, forall S1  S1 < S2  ==>  Bel(A,P,S2), S1)

Future beliefs --
      if A believes he’ll believe P in future, he believes it now
     Bel(A, ∃∃ S2  S1 < S2 and Bel(A,P,S2), S1)
         ==>    Bel(A, P, S1)



Adding Time

   Predicting the future:
        reasoning about the effects of an action

How to say:
   Susan knows that if she moves block A to block B,
       block A will be on top of block B

Need to:
     integrate logic of knowledge with logic of action



               Situation Calculus

   situation   =   instant  of time 
situations partially ordered by <  :    
                                              branching model of time

Actions =   functions on situations

E.g.,  Puton(A, B) maps situations in which blocks
A and B are clear to situations in which block A is on top
of block B

  True-in(Result(put-on(A,B),S), on(A,B))

Know(Sam, True-in(Result(put-on(A,B),S), on(A,B)))



Application:
     Three Wise Men Problem

In other guises:   Dirty Children Problem
                              Cheating Husbands Problem

Idea:  Three wise men are told that at least one
           has a black dot on his forehead.
           Everyone can see if others have black dots,
           but no-one can see his own forehead.
  Assume that we start at t = 0.
  All are perfect reasoners.
  Any round of reasoning takes one unit.
If  all  of the wise men have black dots, how long will
it take them to realize?   If 2 have dots?  if 1 does?



   Three Wise Men

BASE CASE:    1 Wise Man

This is trivial;  he knows he has a dot on
 his forehead so he says it right away,
 at t = 0.



   Three Wise Men
Now suppose there are 2 men

Case I:  1 man has a black dot

  A B

A B

At time t = 0, A sees that B doesn’t
have a dot.  Since he knows that one
of them has a dot, he figures that he does.
So at t = 1,  A says:  I have a black dot.
(B can’t figure anything out.)

At time t = 0, A sees that B has a dot.
Thus, he doesn’t know if he does or not.
But at time t = 1, B is silent (he doesn’t
know if it’s case 1 or case 2).  So A knows
that this can’t  be the same as case1;
thus he must also have a dot.  
So he speaks out at time t = 2.  
B, doing the same reasoning, also speaks
at t = 2.

Case 2: both men
have dots



   Three Wise Men
Now suppose there are 3 men

  A B

A B

C

 C

A  B C

Case 1:  1 black dot

Case 2:  2 black dots

Case 3:
3 black dots



   Three Wise Men
Case of 3 men

  A B C

Case 1:  1 black dot

At time t = 0,  B and C each see one person with a dot.
So they may have dots on their forehead; they don’t know.
But A doesn’t see anyone with a dot on his forehead,
so he knows he must have a dot on his forehead.
So, at time t = 1, he speaks.



   Three Wise Men

A B  C

Case 2:  2 black dots

Case of 3 men

 At time t = 0, everybody sees at least one person with a
dot, so they don’t know if they have dots.
A and B each see 1 person with a dot, so they know:
either there is 1 person with a dot, or 2 people.
At t = 1, no-one speaks.  So A [resp. B] knows it can’t be
that only B [A] has a dot.  Because if that were the case,
at time 1, B [A] would have spoken.  Thus, there must be
2 people with dots -- i.e., A [B] has a dot too.
At t = 2, A   [and B!]  speak.



   Three Wise Men
Case of  3 men

A  B C

Case 3:
3 black dots

At t = 0, each of A, B, and C see that two other people
have dots.  So, A  [resp. B, C] reasons as follows:
Either B and C have dots and I don’t, or we all have dots.
Now, if it were the case that I did not have a dot, this would
reduce to case 2, and at time t = 2, B and C would speak.
When t = 2 passes, and B and C do not speak, A realizes
that it is not case 2; that all three have dots.
B and C, reasoning similarly, come to the same conclusion.
Thus at t = 3, all speak.



N - Wise Man Problem

Assume N wise men.  K have black dots on forehead.
Assuming  -  common knowledge of at least
                           one black dot
                       all perfect reasoners
                       each round of reasoning takes 1 unit
Theorem:    K men will speak at t = K

The crucial concepts:   common knowledge
                                       consequential closure



Three Wise Men   ---  Formulation in Logic

Language:
    black(x)  -  X has a black dot on his forehead
    speak(x,t) -  X states the color on time T
    t + 1   -   successor of time T
    0   -   starting time
    know(x,p,t)  -   X knows P at time T
    know-whether(x,p,t)  -  X knows at T whether P holds

Axioms:
 W1. know-whether(x,p,t) <==> [know(x,p,t) v ~know(x,p,t)]
   (definition of know-whether:  X knows whether P if
     he either knows P or he knows not P)
 W2. speak(x,t) <==> know-whether(x,black(x),t)
   (a wise man declares the color on his head iff he knows
      what it is)



Wise Men -- Logical formulation, cont.

W3.  x < > y ==> know-whether(x,black(y),t)
  (The wise men can see the color on everyone else’s head)
W4. know-color(x,t)  ==> speak(x,t)
  (The wise men speak as soon as they figure it out)
W5. know-whether(y,speak(x,t),t+1)
  (Each wise man knows what has been spoken)
W6. know(x,p,t) ==> know(x,p,t+1)
  (The wise men do not forget what they know)
W7. know(x,black(w1) v black(w2) v black(w3), t)
  (The wise men know that at least one of them has
    a black dot)
W8. if p is an instance of W1. -- W.8, then know(x,p,t)



Inference for 3 Wise Man Problem:

Lemma:    If P is a theorem (can be inferred from 1 -  5,
W.1 -- W.8,  then know(x,p,t)
Proof:  induction on length of inference (2,3, W.8)

 Lemma 1.A  ~black(w2) & ~black(w3)  ==>  speak(w2,0)
Proof:  From W.7, w2 knows that
            either w1, w2, or w3 has a black dot.
From W.3 and 1, w1 knows that neither w2 nor w3 
                    has a black dot.
From 2 and 3, s2 knows that w1 has a black dot.
From W.2, w1 will speak.

Analogously
Lemma 1.B:  ~black(w1) & ~black(w3) ==> speak(w2,0)
Lemma 1.C:  ~black(w1) & ~black(w2) ==> speak(w3,0)



Inference for 3 wise men, cont.

Lemma 2.A:
     ~black(w3) ==> ∃∃ x speak(x,0) v speak(s1,1)
Proof:
  From Lemma 1.A, if ~ black(w2) as well, then speak(w1,0);
  From Lemma 1.B, if ~black(w1) as well, then speak(w2,0);
  Suppose, then, that black(w1) & black(w2) & ~speak(w2,0).
  From W.3,  know(w1,black(w2),1) & know(w1,~black(w3),1)/
  From W.5, know(w1, ~speak(w2,0),1).
  By the lemma of necessitation, know(w1, Lemma 1.B, 1).
  Using the contrapositive of Lemma 1.B and 2,
       know(w1,black(w1),1).

And so on ....



Application:
     Byzantine Problem

Saracens
Byzantines  A Byzantines B

Byzantines must coordinate attack;
     otherwise, they’ll be defeated



Byzantine Agreement:

t = 0:    A sends B message:  Attack at 6:00 AM  (= M)
t = 1:  B sends A message:  received message
t = 2:  A now knows that B received message,
          but B doesn’t know that A knows
          A sends message to B that A received B’s message
t = 3:  B now knows that A knows that B knows M,
          but A doesn’t know that B now knows that
          A knows that B knows that M
t = 2n:  A sends message to B
           A knows that B knows that ... that A knows (2n times)
                                                                      (but not 2n+1 times)

Never reach common knowledge.

Thus, can’t coordinate attack



Application:
    Knowledge Preconditions for Actions and Plans

 Interrelationship between Knowledge and Action

      ---  How does knowledge affect action ?
      ---  How do actions affect knowledge?

Focus of research:

     ---  agent wants to do an action
     ---  he doesn’t know all that he needs to know
     ---  how can he get the action done anyway?



Knowledge Preconditions
   for Actions and Plans

Moore’s theory based on

---   possible worlds theory of knowledge
---   situation calculus

       situations   =   possible worlds

Studied by McCarthy and Hayes;
Moore presented first concise solution.



      Moore:
Knowledge Preconditions Problem 
                                                    (single agent case)
        
Basic idea:
       You know how to do an action      Dial(no(Suzanne))
          iff you know executable procedure
                 [assumption:  all agents know basic procedures]
          iff you know what the parameters of the actions are

  So you know how do perform   Dial(no(Suzanne))
      if you know what no(Suzanne) is

How do you know what the parameters of an action are?
   You know what something is iff you know of a
       rigid designator  for that object

rigid designator  =  something that stays the same in
                                  all possible worlds
                                  (name, number,  constant)
Know how to do Dial(no(Suzanne)) if know some number
     equal to  no(Suzanne)



Moore:
Knowledge Preconditions for Plans  (single-agent)

Basic idea:
   Knowledge Preconditions for Plans  reduce to
   Knowledge Preconditions for Actions

For example:
   
You know how to do  sequence(act1, act2) 
    if you know how to do act1  
      and as a result of doing act1
         you know how to do act2

Consider the plan   
      sequence(look_up_no(Suzanne), dial(no(Suzanne)))
You can perform the plan if you can do lookupno(Suzanne)
and you can then do  dial(no(Suzanne))



Extension to Moore      (Morgenstern)   :
 Knowledge Preconditions for Multi-agent Plans

Example:
   Pierre wants to drive to Lyon
   He doesn’t know the directions
   He does know the number of the automobile club
   How can he plan to drive to Lyon?
We want to show that Pierre can execute the following plan:
 
  sequence(dial(Pierre, no(auto_club)),
                    ask(Pierre, officer(auto_club), directions(Lyon))),
                    tell(officer(auto_club), Pierre, directions(Lyon))))

What’s needed:
    ability to reason about one’s own ability to do actions,
    ability to predict   other people’s actions



Knowledge Preconditions for Multi-agent Plans
In general:

   ---  need to know that you’ll be able  to do
         your part of the plan when it comes up
   ---  need to predict that other agents will   do
         their parts of the plan at the proper time 

How to predict other agents’ actions:

   ---  consider interactions between knowledge, goals,
         and actions  (BDI)
   ---  agents typically act in their own interests
   ---  will often accede to a request if there are no
         conflicting goals

Note:  Importance of communication
        (establishing goals,  relaying information)



Knowledge Preconditions for Multi-agent Plans

Consider Pierre’s plan:
 
    sequence(dial(Pierre, no(auto_club)),
                      ask(Pierre, officer(auto_club), directions(Lyon))),
                      tell(officer(auto_club), Pierre, directions(Lyon))))

Pierre can execute the plan if :
    ---   he knows the number of the auto club
    ---   he knows how to ask for directions
    ---   he can predict that once asked, the officer of the
          auto club will give him directions
    ---   he knows that once the officer gives him directions,
           he will know how to get to Lyon

works because officer is cooperative and knowledgeable,
and knows how to give directions



   Application:  Speech Acts (Grice)

“Dear Sir,
      Mr. X has an excellent command of English
      and always comes to class”

Why will this doom Mr. X?

Cooperative Principle
Plus Maxims of Conversation:

   Say as much as is needed, no more, no less

Since there is common knowledge of these maxims,
and Mr. X’s teacher must know more about him,
his failure to say more  must mean that there’s nothing
more that is good to say.

Based on common knowledge of convention,
of  maxims of conversation



            Beyond Modal Logic

Disadvantages of Modal Logic:

1.  Inexpressive
       Can’t quantify over propositions
       Can’t say, e.g.
          John knows something that Bill doesn’t know
2.  Non-intuitive semantics
        --- state-based
        --- possible worlds

3.  Undesirable consequences of semantics
        --- necessary truths
        --- consequential closure
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Alternative to modal logic:
                   Syntactic Logic

VWDQGDUG�SUHGLFDWH�ORJLF
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introduce an invertible map from sentences (wffs) to terms

[Godel mapping maps each wff onto an integer]

denote range of mapping function with quotation marks

    Know(John, “Frog(Kermit)”)

Tarskian semantics



            Features of Syntactic Logics

Advantages:

1.  Expressivity
        ∃∃x (Know(Bill,x)  &  ~ Know(John,x))
        forall x (Concerns(x,Radiology) ==> Know(Helene,x))

2.  No need for necessitation, consequential closure

Disadvantages:

 1.  Messiness   -  quasi-quotation

 2.  Paradox

     Tarskian Semantics considered advantage by some,
                                                          disadvantage by others



Messiness of Syntactic Logic

Saying simple things gets ugly.
Can’t just say  [principle of positive introspection]:

forall a,x
Know(a,x)   ==>  Know(a,"Know(a,x)")

This would imply that
Know(John,"Frog(Kermit)")  ==>
    Know(John, "Know(a,x)")
which is not what we want and meaningless, too!

Need quasi-quotes, which allow us to substitute value
of quoted string:
forall a,x
  Know(a,x)   ==>   Know(a,"Know(@a,!p!)")



                  Paradox
akin to Liar Paradox  ---    
      Everything I say is a lie
        P iff  ~True("!P!")

Knower Paradox
       P iff Know(a,"~!P!")
      P is true iff a knows that it is false   

Comes from unrestricted use of quotation  
Arises in many reasonable languages

Surprise Test Paradox:
    You’ll have a test someday next week,
       but you won’t know which



Pravda:   Everything the Times says is a lie

New York Times:  The Pravda sometimes lies

Whether or not these sentences are paradoxical
  depends on empirical facts about the world

e.g., has NY Times said one true fact?

and not only on structure of sentences



Resolutions to Paradox

--- reduce expressivity
             (Tarski,  Konolige)
     no self-reflexive sentences

--- Three-valued logic: true, false, neither
       (Kripke, Gupta, Herzberger,  Barwise,
        Morgenstern)

--- Different semantics for Know, True
       (Perlis)
No free lunch:  drawbacks for each
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Dropping Consequential Closure

Clearly false:
---  agents make mistakes

---  if true,  all agents should know whether 
     Fermat’s last theorem  Riemann’s Conjecture is true,
     but no-one does

--- agents have inconsistent beliefs but don’t believe
                                                                      everything

---doesn’t take into account  time, resources, focus, etc.

Until now, agents have been assumed to be
perfect reasoners:
    Know(P)  &  Know(P ==> Q) ==> Know(Q)
       [consequential closure]



Three types of incompleteness
                                      (Konolige)

--- resource incompleteness
      (running out of time to take a test)

--- fundamental logical incompleteness
       (not knowing how to do integrals)

--- relevance incompleteness
       (not knowing which facts to include)



Building a System without Consequential Closure

Issues:

•  how can we drop consequential closure

•   what can we replace it with



Dropping Consequential Closure

Difficult because it is built into
  possible worlds semantics, 
  state-based definition of knowledge
    part of every standard modal logic

Ways to proceed:
1.   Drop modal logic - go to syntactic logic
         (Konolige, Haas, Elgot-Drapkin)

2.   Make a distinction between 
      explicit and implicit knowledge
       Implicit knowledge = standard concept of knowledge
       Introduce concept of awareness
       Explicit knowledge = awareness plus implicit knowledge
       Consequential closure for implicit knowledge only
         (Levesque, Halpern and Fagin)



Replacing Consequential Closure
Problem :  If agents don’t do perfect reasoning,
                  just what do they do?

Proposal : Limit reasoning rules in some way

--- restricted set of inference rules
         e.g., math student might not know integrals
                 robot might not know path-finding algorithm
--- restricted resources
         --- specifically time, number of steps
         --- clear  that agents only have limited time to reason
              (Elgot-Drapkin,  Kraus, Nirkhe, and Perlis)
--- “need-to-know”
          --- idea is that our reasoning is goal-oriented
          --- plan to reason
              (Haas)



Problems with Alternatives to 
     Consequential Closure:
                     
--- restricted rules seem arbitrary, 
                                          counter-intuitive

--- can always find counterexamples
  --- limited resources, e.g., limited number of steps:
       what makes n the cutoff as opposed to n+1 ?
       If I know p, and q is n steps away, I’ll know q.
       But then won’t I know r if r is 1 step away from q?

  --- restricted reasoning rules:
      logicians are thoroughly familiar with rules of logic,
       and still aren’t perfect reasoners.
  --- “need to know”  - agents seem to chain forward, too.



               Nonmonotonic Logic
Commonsense reasoning
 often draws conclusions on basis of partial information
•  Birds typically fly
   Tweety is a bird

 Tweety flies    

Counterexamples:
    penguins, broken wings

•  If I turn the key in the ignition, 
    the car will    start

Counterexamples:
dead battery, bad starter

   Really:
  If I turn the key in the ignition, and the starter works, and
  the battery works, and  there's gas in the car
  and there's no potato in the tailpipe 
   ....       and ...   then    the  car will start

• If I had an older brother, I'd know it       Counterexamples:
   I don't know I have an older brother,     General Hospital,
    so I infer that I don't have one                Bill Clinton



Such reasoning  (Tweety flying, my car
 starting,  my lack of an older brother)
 can't be carried out in classical logic

Classical logic ---  Drawing permanent conclusions
                                based on complete information

What we need --- Drawing conclusions on basis of
                              incomplete  information  ---
                              later retract Nonmonotonic Logic  

Classical Logic ---   monotonic in set of assumptions
            the more assumptions, the more conclusions

Nonmonotonic Logic  --- nonmonotonic in set of assumptions
  as you add assumptions, you may have to retract conclusions

Bird(Tweety)

Fly(Tweety)
but Bird(Tweety), Penguin(Tweety)

 retracts Fly(Tweety)



How can we capture nonmonotonic reasoning?

1.  Default Logic  (Reiter)
     based on  default  rules:
          Bird(x) : Fly(x)

    Fly(x)

new type of inference rule

2.  NML  (McDermott and Doyle)
     based on idea of consistency
       Bird(x) & M(Fly(x))  ==>  Fly(x)

 rules within the logic

3.  Circumscription (McCarthy)
      restricts set of objects;
         in particular, abnormal objects
        Bird(x)  and ~ ab(x)  ==>  Fly(x)

4.  Autoepistemic Logic  (Moore)
        if x is true, I’d know x  
                 (where x is an “important” statement)
        Allows inference from x not known to ~ x



Autoepistemic Logic  (Moore)

Commonsense Reasoning:
     based on one’s beliefs   --- or lack of them

e.g.  how do I know I don’t have an older brother?
        If I had an older brother, I’d know about it

P ==   “ I have an older brother ”
    P  ==>  Know(P)

Get from:  P is not in my knowledge base
           to:   I don’t know P:    ~Know(P)

Note:  nonmonotonic

If I later find out that a parent previously married
  and had children, I’d retract this conclusion
Nonmonotonic because indexical



Autoepistemic Logic  ---  how it works
based on logic of belief  (L  === belief)

set of formulas T that represent beliefs of reasoning
agents should satisfy:

1.  if P 1 ... Pn   in T,  and P 1 ... Pn |- Q, then Q in T
                                           (consequential closure)
2.  if P in T, then LP in T   (positive introspection)
3.  if P not in T,  then ~LP in T  (“negative introspection”)

Theories obeying 1. - 3.  are stable.
If a stable theory is consistent, you also get:

4.  if LP in T,  then P in T
5.  if ~LP in T, the P not in T

Def:  T is grounded in set of premises A iff every formula of T
    is included in the tautological consequences of
          A U {LP | P in T}  U {~LP | P not in T}
Theorem:   An AE theory T is sound w.r.t. set of premises A
                  iff T is grounded in A



Autoepistemic Logic  ---  how it works

The older brother example:

P =  “I have an older brother”
A =  {P ==> LP}

By rule 1.,  P ==> LP in T.  
Also,  ~LP ==> ~P in T

Now P not in T.  So by 3.,  ~LP in T.
So by 1.,  ~P in T, and by 2., L~P in T.
Result:  You know that you do not have an older brother.
You have reasoned from your own lack of knowledge

Note:   stable set semantics gives us weak S5:
            preferred logic of belief
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Issue:  Construct Theorem Prover 
             for Epistemic Logics

Problem:  Complexity
--- very inefficient
---  theorem prover “driven” by axioms on knowledge

Idea:  Circumvent

Approaches:
       ---  multiple contexts
       ---  direct representation, procedural attachment
       ---  inference with possible worlds
       ---  vivid reasoning



     Multiple Contexts

Basic Idea:
    For each state of knowledge, or state of
    imbedded knowledge,  create a separate context
    of “object-level” facts.
    Inference within a context uses “ordinary”
    automated reasoning.
    Inference from one context to the next uses
    special-purpose inference.



Example of Multiple Contexts

Given:
    In S1,  A knows p.
    In S1, B knows that p ==> q.
    In S1, A knows that B knows that p ==> q.
    A tells p to B during [S1,S2]

Initialize:
    Context S1A  (what A knows in S1):  {p}
    Context S1B  (what B knows in S1): {p==>q}
    Context S1AB (what A knows that B knows in S1): {p==>q}

Create corresponding contexts for time S2:
    Context S2A  =  { ... }
    Context S2B  =  { ... }
    Context S2AB = { .... }



Example of multiple contexts, continued

Frame Inferences:
 Context S2A :  { p ... }           (A still knows p)
 Context S2B: { p ==> q ... }   (B still knows p ==> q}
 Context S2AB: { p ==> q ...} (A knows that B still knows
                                                              that p ==> q)

Inferences associated with “tell” :
  If X tells P to Y during [S1,S2] then in S2 Y knows P and
     X knows that Y knows P

  Context S2B:   { p ==> q, p}  ( B now knows P)
  Context S2AB: { p ==> q, p)  (A now knows that B knows p)
Modus Ponens within context:
   Context  S2B: { p ==> q, p, q}  (B infers Q)
   Context S2AB: { p ==> q, p, q} (A infers that B infers Q}



Implementation Remark:

Since different contexts are likely to share a
lot of knowledge,inference will be more efficient 
if facts are labelled by context,as in CONNIVER
and ATMS, rather than copying the whole
knowledge base.



Limitations, Issues:

--- Limited expressivity:
       Difficult to express
            A knows p or A knows q
            A knows who the president of the Congo is
            The man with the white hat knows p
            A will know p when the bell rings (partial spec. of time)
            A knows that B does not know p

 --- When do you generate new contexts?
 --- What are the cross-context inference rules?
 --- How is the closed-world assumption to be applied?
        If S1A does not contain q, should we conclude
            A knows in S1 that q is false?  or
            A does not know in S1 whether q is true or false?
        If S1AB does not contain q, should we conclude
            In S1, A knows that B knows that q is false?  or
            In S1,  A knows that B does not know whether q? or
            In S1, A does not know whether B knows q?          



Explicit Syntactic Representation

Express arbitrary sentences about knowledge in
syntactic representation
Use first-order theorem prover incorporating theory of strings

String operations implemented partly or wholly 
by procedural attachment
Axioms of knowledge implemented largely by special-purpose
inference rules

Example:
Axiom 1: Joe knows that a person always knows
                  whether he’s hungry
   Know(Joe,"forall x know-whether(x,"hungry(@x)")")
Axiom 2:  Joe knows that Fred is hungry
   Know(Joe,"hungry(Fred)")
To Prove:  Joe knows that Fred knows that he is hungry
   Know(Joe,"Know(Fred,"hungry(Fred)")")



Proof:

Applying the inference rule R1, consequential closure,
and the definition 
know-whether(A,q) <==> Know(A,q) v  Know(A, ~q) 
to Axiom 1 gives:
3.  Know(Joe,"forall x Know(x, "hungry(@x)" v
                                       Know(x,"~hungry(@x)")")

Applying R1 plus the axiom of veridicality plus the
propositional axiom (P ==> Q) ==> (P ==> (P & Q)) to 3. gives
4. Know(Joe,
  "forall x (hungry(x) & Know(x,"hungry(@x)")) v
        ~ hungry(x) & Know(x,~hungry(@x)"))")

Applying R1 to 2. and 4. gives
5.  Know(Joe,"hungry(Fred) & Know(Fred,"hungry(Fred)")")
Applying R1 to 5 gives
6.  Know(Joe,"Know(Fred,"hungry(Fred)")")

Problem:  Immense search space.  How to control search?
    



Inference with Possible Worlds

Technique:  Translate all statements into first-order language
  of possible worlds.  
Apply first-order theorem proving techniques.

Example:
Axiom 1:  Joe knows that a person always knows if he's hungry
 forall W1
    K(Joe,w0,W1) ==>
       forall x (( forall W2 K(X,W1,W2) ==> hungry(X,W2)) or
                       forall W3 K(X,W1,W3) ==> ~ hungry(X,W3)))
Axiom 2: Joe knows that Fred is hungry
 forall W4 K(Joe,w0,W4) ==> hungry(Fred,W4)
To prove:   Joe knows that Fred knows that he is hungry
  forall W5 K(Joe,w),W5) ==> 
      forall W6 K(Fred,W5,W6) ==> hungry(Fred,W6)



Skolemizing:
  
1. ~K(Joe,w0,W1) v ~K(X,W1,W2) v hungry(X,W2) 
       v ~K(X,W1,W3)) v ~hungry(X,W3)

2. ~K(Joe,s0,S4) v hungry(fred,W4)

Negation of 3:

3A. K(Joe,w0,w5)  {w5 and w6 are Skolem constants}
3B. K(fred,w5,w6)
3C. ~hungry(Fred,w6)

Skolemization of reflexivity:

4. K(X,W,W)

The resolution proof is then immediate



Comparison to syntactic representation

--- Much more controlled inference path

--- Somewhat less expressive language

--- Substantially less intuitive representation
                               and proof structure



Vivid Representation (Grove and Halpern, '92)

Construct an actual model of the theory as a set of
possible worlds  (or a collection of models).

What is true in the model(s) may be a consequence 
                                                            of the theory.



Example:

Given:
    know(a,p)
    know(a, ((p & q) ==> r))
    ~ know(a,r)
S5 logic of knowledge

W1
W2

W3

p,q,r
p,~q,r

 p,~q,~r
To show know(a,~r ==> ~q)) check that ~r ==> ~q
holds in every accessible world.
To show ~know(a,q) show that q is false in some accessible
  world.

Problem:  Distinguish between the consequences of
                  the theory and random features of the model
(e.g., ~know(a, q <==> r) holds because q<==> r false in W2.
But it's not a consequence of the theory.
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Implementations

--- Restricted to toy programs
         --- Planning
                   PAWTUCKET
                   UWL



UWL  (Etzioni et. al.)
 Modified TWEAK planner, find out variable bindings

Goal:  (satisfy (color chair ?c)
            (satisfy (color table ?c)
            (handsoff (color table ?tc))

Make the chair the same color as the table,
but not by changing the color of the table

Actions: (SENSE-COLOR ?object ! color)
Effects: ((observe ?object !color))

Action: (GET-PAINT ? color)
Effects: (have-color ?color)

Name: (PAINT ?obj ?color)
Preconds: (satisfy ((have-color ?color)))
Effects(cause ((color ?obj ?color)))



UWL  Plan:

(sense-color table !color)
(get-paint !color)
(paint chair ! color)



Summary

--- Logics of knowledge and belief are
     needed for many AI applications
        --- planning, speech acts, distributed systems

--- Modal logics, Syntactic logics
     can be used to represent knowledge

--- Many extensions needed for
       commonsense reasoning:
          --- time,  default reasoning
--- Much future work ahead
           ---  concrete applications,  multiple agents,
                 consequential closure



       Pawtucket  (Davis, unpublished)
Situation:
    John knows that Bill knows Mary’s phone no
    John knows that phone1 is a telephone

  Causal rules:
      A way to call x is to dial x’s no. on the phonme
      The preconditions of B telling P to A in S are
        that A and B are at the same place
        and that B knows P is true

Wanted:
     A plan for John to call Mary’s no.

Plan:
   do(john,request(bill,do(bill, tell(john,a_q(n))))),
   do(bill,tell(john,a_q(n))),
   do(john, dial(a_q(n), phone1))


