K-means clustering, Gaussian Mixture Model

Kairit Sirts

21.02.2014

Kairit Sirts ()

K-means clustering, Gaussian Mixture Model

21.02.2014 1 / 29

(日) (四) (三) (三) (三)

K-means clustering

- Begin by initializing randomly K points.
- These will be the cluster centroids.
- Attach each point to the closest centroid.

$$z_i = \arg\min_k \|\mathbf{x}_i - \boldsymbol{\mu}_k\|_2^2$$

- z_i is the cluster label for point x_i.
- Proceed until no changes made or certain number of iterations done:
 - Recompute the mean of each cluster these will be the new centroids.

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{i:x_i=k} \mathbf{x}_i$$

Reattach each point to the closest centroid.

Kairit Sirts ()

K-means clustering, Gaussian Mixture Model

Example

Figure 9.1 from Pattern Recognition and Machine Learning (Bishop).

Kairit Sirts ()

K-means clustering, Gaussian Mixture Model

▶
₹
>
>
>

>

>

<th

・ロト ・ 理ト ・ ヨト ・ ヨト

K-means algorithm

- ▶ It is an **unsupervised** learning method no labelled data is needed.
- It is used to solve clustering problems where we want to discover latent structure from unlabelled data.
- K-means algorithm is guaranteed to converge it will find a stable solution.
- This solution is not guaranteed to be globally optimal different runs may produce different clusterings, depending on the particular initialization.
- ► *K* is the hyperparameter defining how many clusters will be found.
- Centroids are the parameters of the model learned during training.

Some remarks

- ▶ It is a very well-known and widely used clustering algorithm.
- K-means works well when the data consists of well-separated Gaussians.
- It works pretty poorly when the data does not resemble Gaussian at all.
- We have to know or guess the number of clusters K.

Probabilistic approach

Kairit Sirts ()

K-means clustering, Gaussian Mixture Model

21.02.2014 6 / 29

イロト イポト イヨト イヨト 二日

One-dimensional Gaussian

- \blacktriangleright Parameterized by mean μ and variance σ^2
- Probability density function (pdf):

$$p(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

21.02.2014 7 / 29

D-dimensional Gaussian

• Parameterized by mean vector μ and covariance matrix Σ .

$$p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$$

K-means clustering, Gaussian Mixture Model

(日) (四) (三) (三) (三)

2-dimensional Gaussian example

Kairit Sirts ()

K-means clustering, Gaussian Mixture Model

> ব ≣ > ≣ ৩ ৭ ৫ 21.02.2014 9 / 29

Fitting a Gaussian

- Assume we have a dataset with *n* points $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T$.
- Assume these points were drawn independently from some Gaussian.
- Finding the mean and variance of this Gaussian is fitting the model to the data.
- ► The model in this context is **probabilistic** a Gaussian distribution.
- How do we find the mean and variance?

Estimated Gaussian parameters

► Sample mean:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Kairit Sirts ()

K-means clustering, Gaussian Mixture Model

21.02.2014 11 / 29

(日) (四) (三) (三) (三)

Where do these estimates come from?

- We can derive them using maximum likelihood (ML) principle.
- ML approach gives us the mean and variance that maximize the probability of the sample points.
- This gives us an estimate of the parameter, not the true value.
- ML principle is widely used in machine learning for deriving formulas for learning model parameters.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

General recipe for applying ML principle

- Take the formula of data probability according to the model.
- Take the (natural) logarithm of it.
- Drop the constant terms.
- Take the partial derivative with respect to the parameter.
- Set the derivative to zero.
- Solve for parameter value.

Probability of data

- If the data points are drawn independently as we assumed then the total probability of the data is the product of point probabilities:
- Let's take one-dimensional data for now:

$$P(\mathbf{X}|\mu,\sigma^2) = \prod_{i=1}^{n} P(x_i|\mu,\sigma^2)$$

= $\prod_{i=1}^{n} \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{1}{2\sigma^2}(x_i-\mu)^2}$
= $\frac{1}{(2\pi\sigma^2)^{n/2}} \prod_{i=1}^{n} e^{-\frac{1}{2\sigma^2}(x_i-\mu)^2}$
= $\frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i-\mu)^2}$

Kairit Sirts ()

K-means clustering, Gaussian Mixture Model

21.02.2014 14 / 29

イロト イポト イヨト イヨト

Probability and likelihood

- In the context of ML parameter estimation we call this probability data likelihood.
- Probability and likelihood are essentially the same thing.
- The subtle difference lies in the assumption of **what is being fixed**.
- When talking about likelihood the data is fixed and the probability formula is a function of parameters:
 - We can compute how likely a certain set of parameters gave rise to this data.
- When talking about probability the parameters are fixed:
 - We can compute the probability of drawing this data using the given parameters.

Computing the log-likelihood

- We do it because this replaces the product with summation and thus makes the derivative computation easier.
- We can do it because the logarithm is a monotonically increasing function having the extremums at the same points where the probability density function.

$$\log P(\mathbf{X}|\mu, \sigma^{2}) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^{2} - \frac{1}{2\sigma^{2}}\sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

Kairit Sirts ()

K-means clustering, Gaussian Mixture Model

21.02.2014 16 / 29

Sufficient statistics

> The last term with summation can be expanded:

$$\sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} (x_i^2 - 2x_i\mu - \mu^2)$$
$$= \sum_{i=1}^{n} x_i^2 - 2\mu \sum_{i=1}^{n} x_i + n\mu^2$$

- ► Likelihood depends on data set only through two quantities: ∑ⁿ_{i=1} x²_i and ∑ⁿ_{i=1} x_i.
- These are called sufficient statistics.
- When we know sufficient statistics then we know all the information that is possible to obtain from the data to make parameter estimates.

イロト 不得 とくほ とくほう 二日

Estimate for mean μ

• Take the partial derivative from log-likelihood with respect to μ :

$$\frac{\partial \log P(\mathbf{X}|\mu, \sigma^2)}{\partial \mu} = -\frac{1}{2\sigma^2} \left(-2\sum_{i=1}^n x_i + 2n\mu \right)$$
$$= \frac{1}{\sigma^2} \left(\sum_{i=1}^n x_i - n\mu \right)$$

Set it two 0:

$$\frac{1}{\sigma^2} \left(\sum_{i=1}^n x_i - n\mu \right) = 0 \quad \Rightarrow \quad \sum_{i=1}^n x_i - n\mu = 0$$
$$\sum_{i=1}^n x_i = n\mu \quad \Rightarrow \quad \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i$$

Kairit Sirts ()

K-means clustering, Gaussian Mixture Model

Estimate for variance σ^2

• Take the partial derivative from log-likelihood with respect to σ^2 :

$$\frac{\partial \log P(\mathbf{X}|\mu,\sigma^2)}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} - \frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2 \left(-\frac{1}{\sigma^4}\right)$$
$$= \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 - \frac{n}{2\sigma^2}$$

Set it to 0:

$$\frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 - \frac{n}{2\sigma^2} = 0 \quad \Rightarrow \quad \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 = n$$
$$\sum_{i=1}^n (x_i - \mu)^2 = n\sigma^2 \quad \Rightarrow \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

Kairit Sirts ()

K-means clustering, Gaussian Mixture Model

Unbiased estimators

- It is possible to show that $E[\hat{\mu}] = \mu$
- Thus $\hat{\mu}$ is the **unbiased** estimator for true mean μ .
- However, the expected value of the MLE variance is:

$$E\left[\hat{\sigma}^2\right] = \frac{n-1}{n}\sigma^2$$

- Thus, this estimate is biased MLE underestimates the variance.
- It can be shown that with a small modification the variance estimator becomes unbiased:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Kairit Sirts ()

K-means clustering, Gaussian Mixture Model

21.02.2014 20 / 29

Multivariate case

- For deriving estimates for multivariate data we need to use matrix algebra.
- Otherwise the principles are similar to the univariate case.
- ► If you are interested in the derivations, I can give you pointers.
- Mean estimate:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

Sample covariance:

$$\hat{\Sigma} = rac{1}{n-1}\sum_{i=1}^{n} (\mathbf{x}_i - \hat{\mu})(\mathbf{x}_i - \hat{\mu})^{T}$$

Kairit Sirts ()

K-means clustering, Gaussian Mixture Model

21.02.2014 21 / 29