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K-means clustering

I Begin by initializing randomly K points.

I These will be the cluster centroids.

I Attach each point to the closest centroid.

zi = arg min
k
‖xi − µk‖22

I zi is the cluster label for point xi .
I Proceed until no changes made or certain number of iterations done:

I Recompute the mean of each cluster - these will be the new centroids.

µk =
1

Nk

∑
i :xi=k

xi

I Reattach each point to the closest centroid.
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Example
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Figure 9.1 from Pattern Recognition and Machine Learning (Bishop).
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K-means algorithm

I It is an unsupervised learning method - no labelled data is needed.

I It is used to solve clustering problems where we want to discover
latent structure from unlabelled data.

I K-means algorithm is guaranteed to converge - it will find a stable
solution.

I This solution is not guaranteed to be globally optimal - different runs
may produce different clusterings, depending on the particular
initialization.

I K is the hyperparameter defining how many clusters will be found.

I Centroids are the parameters of the model learned during training.
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Some remarks

I It is a very well-known and widely used clustering algorithm.

I K-means works well when the data consists of well-separated
Gaussians.

I It works pretty poorly when the data does not resemble Gaussian at
all.

I We have to know or guess the number of clusters K .
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Probabilistic approach
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One-dimensional Gaussian
I Parameterized by mean µ and variance σ2

I Probability density function (pdf):

p(x |µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2
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D-dimensional Gaussian

I Parameterized by mean vector µ and covariance matrix Σ.

p(x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
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2-dimensional Gaussian example
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Fitting a Gaussian

I Assume we have a dataset with n points X = (x1, . . . , xn)T .

I Assume these points were drawn independently from some Gaussian.

I Finding the mean and variance of this Gaussian is fitting the model
to the data.

I The model in this context is probabilistic - a Gaussian distribution.

I How do we find the mean and variance?
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Estimated Gaussian parameters

I Sample mean:

µ̂ =
1

n

n∑
i=1

xi

I Sample variance:

σ̂2 =
1

n − 1

n∑
i=1

(xi − µ̂)2

Kairit Sirts () K-means clustering, Gaussian Mixture Model 21.02.2014 11 / 29



Where do these estimates come from?

I We can derive them using maximum likelihood (ML) principle.

I ML approach gives us the mean and variance that maximize the
probability of the sample points.

I This gives us an estimate of the parameter, not the true value.

I ML principle is widely used in machine learning for deriving formulas
for learning model parameters.
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General recipe for applying ML principle

I Take the formula of data probability according to the model.

I Take the (natural) logarithm of it.

I Drop the constant terms.

I Take the partial derivative with respect to the parameter.

I Set the derivative to zero.

I Solve for parameter value.
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Probability of data

I If the data points are drawn independently as we assumed then the
total probability of the data is the product of point probabilities:

I Let’s take one-dimensional data for now:

P(X|µ, σ2) =
n∏

i=1

P(xi |µ, σ2)

=
n∏

i=1

1

(2πσ2)1/2
e−

1
2σ2 (xi−µ)2

=
1

(2πσ2)n/2

n∏
i=1

e−
1

2σ2 (xi−µ)2

=
1

(2πσ2)n/2
e−

1
2σ2

∑n
i=1 (xi−µ)2
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Probability and likelihood

I In the context of ML parameter estimation we call this probability
data likelihood.

I Probability and likelihood are essentially the same thing.

I The subtle difference lies in the assumption of what is being fixed.
I When talking about likelihood the data is fixed and the probability

formula is a function of parameters:
I We can compute how likely a certain set of parameters gave rise to this

data.

I When talking about probability the parameters are fixed:
I We can compute the probability of drawing this data using the given

parameters.
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Computing the log-likelihood

I We do it because this replaces the product with summation and thus
makes the derivative computation easier.

I We can do it because the logarithm is a monotonically increasing
function having the extremums at the same points where the
probability density function.

logP(X|µ, σ2) =

− n

2
log 2π − n

2
log σ2 − 1

2σ2

n∑
i=1

(xi − µ)2
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Sufficient statistics

I The last term with summation can be expanded:

n∑
i=1

(xi − µ)2 =
n∑

i=1

(
x2i − 2xiµ− µ2

)
=

n∑
i=1

x2i − 2µ
n∑

i=1

xi + nµ2

I Likelihood depends on data set only through two quantities:
∑n

i=1 x
2
i

and
∑n

i=1 xi .

I These are called sufficient statistics.

I When we know sufficient statistics then we know all the information
that is possible to obtain from the data to make parameter estimates.
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Estimate for mean µ

I Take the partial derivative from log-likelihood with respect to µ:

∂ logP(X|µ, σ2)

∂µ
= − 1

2σ2

(
−2

n∑
i=1

xi + 2nµ

)

=
1

σ2

(
n∑

i=1

xi − nµ

)

I Set it two 0:

1

σ2

(
n∑

i=1

xi − nµ

)
= 0 ⇒

n∑
i=1

xi − nµ = 0

n∑
i=1

xi = nµ ⇒ µ̂ =
1

n

n∑
i=1

xi
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Estimate for variance σ2

I Take the partial derivative from log-likelihood with respect to σ2:

∂ logP(X|µ, σ2)

∂σ2
= −n

2

1

σ2
− 1

2

n∑
i=1

(xi − µ)2
(
− 1

σ4

)

=
1

2σ4

n∑
i=1

(xi − µ)2 − n

2σ2

I Set it to 0:

1

2σ4

n∑
i=1

(xi − µ)2 − n

2σ2
= 0 ⇒ 1

σ2

n∑
i=1

(xi − µ)2 = n

n∑
i=1

(xi − µ)2 = nσ2 ⇒ σ̂2 =
1

n

n∑
i=1

(xi − µ)2
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Unbiased estimators

I It is possible to show that E [µ̂] = µ

I Thus µ̂ is the unbiased estimator for true mean µ.

I However, the expected value of the MLE variance is:

E
[
σ̂2
]

=
n − 1

n
σ2

I Thus, this estimate is biased - MLE underestimates the variance.

I It can be shown that with a small modification the variance estimator
becomes unbiased:

σ̂2 =
1

n − 1

n∑
i=1

(xi − µ̂)2
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Multivariate case

I For deriving estimates for multivariate data we need to use matrix
algebra.

I Otherwise the principles are similar to the univariate case.

I If you are interested in the derivations, I can give you pointers.

I Mean estimate:

µ̂ =
1

n

n∑
i=1

xi

I Sample covariance:

Σ̂ =
1

n − 1

n∑
i=1

(xi − µ̂)(xi − µ̂)T
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