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Example:

Set of health data:

Age BMI high SBP

30 26,3 no
31 27,1 no
32 27,6 yes
32 24,1 no
32 24,4 yes
· · · · · · · · ·

Goal: Learn to predict whether the person has a risk for high
systolic blood pressure (SBP > 140) based on the age and body
mass index (BMI).
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Example: fitting linear regression
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Example

Instead of the straight line we would like to fit a curve with range
between 0 and 1.
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Logistic function

Logistic function is a sigmoid function and has the formula:

g(z) =
1

1 + e−z

Note that:
g(z) = 0.5, if z = 0

g(z) > 0.5, if z > 0

g(z) < 0.5, if z < 0



Derivative of logistic function

Logistic function derivative has a nice form:

g′(z) = g(z)(1− g(z))

How do we get it?
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1

1 + e−z

g′(z) = − 1
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Hypothesis for logistic regression

Let’s change the hypothesis by using the logistic function:

hθ(x) = g(θTx) =
1

1 + e−θ
Tx

where:

θTx =

n∑
j=0

θjxj and by convention x0 = 1

Again, note that:

g(θTx) = 0.5, if θTx = 0

g(θTx) > 0.5, if θTx > 0

g(θTx) < 0.5, if θTx < 0



Probabilistic interpretation

We can again give the model the probabilistic interpretation and
then use the maximum likelihood principle to find the parameters:

P (y = 1|x;θ) = hθ(x) = g(θTx)

P (y = 0|x;θ) = 1− hθ(x) = 1− g(θTx)

It is possible to write these two equations compactly with a single
formula:

P (y|x;θ) = hθ(x)
y(1− hθ(x))1−y

When y = 1 then the second factor is equal to one and only the
first factor counts. When y = 0 then the first factor becomes equal
to one and only the second factor counts.



Meaning of θTx in logistic regression

We can take the logistic function and express it in terms of θTx:

g(θTx) =
1

1 + e−θ
Tx

=
1

1 + 1

eθT x

=
eθ

Tx

1 + eθ
Tx

eθ
Tx = g(θTx)(1 + eθ

Tx) = g(θTx) + g(θTx)eθ
Tx

g(θTx) = eθ
Tx − g(θTx)eθ

Tx = eθ
Tx(1− g(θTx))

eθ
Tx =

g(θTx)

1− g(θTx)

θTx = log
g(θTx)

1− g(θTx)

This is called log-odds, where odds refers to the value where the
probability of an event occurring is divided by the probability of

not occurring
(

p
1−p

)
.



Likelihood
We first write down the formula for the probability of the whole
data set (likelihood of the parameters):

L(θ) = P (Y |X;θ) =

m∏
i=1

hθ(xi)
yi(1− hθ(xi)1−yi

As usual, we will prefer operating on log-likelihood:

`(θ) = logL(θ) = log

m∏
i=1

hθ(xi)
yi(1− hθ(xi)1−yi

=
m∑
i=1

log hθ(xi)
yi(1− hθ(xi)1−yi

=

m∑
i=1

(
log hθ(xi)

yi + log (1− hθ(xi)1−yi
)

=
m∑
i=1

(yi log hθ(xi) + (1− yi) log (1− hθ(xi)))



Maximizing likelihood

I Now we can use the already familiar method of gradient
descent to minimize the negative log-likelihood

I Or we can use the method of gradient ascent to maximise
the log-likelihood

I The difference between gradient ascent and gradient descent
is in the sign of the update step

I For gradient descent we subtract the update:

θj = θj − α
∂

∂θj
`(θ)

I For gradient ascent we add the update:

θj = θj + α
∂

∂θj
`(θ)



Derivative for the gradient method

I Take the derivative from the log-likelihood:

∂

∂θj
`(θ) =

∂

∂θj

m∑
i=1

(yi log hθ(xi) + (1− yi) log (1− hθ(xi))

=

m∑
i=1

(
yi

1

hθ(xi)

∂

∂θj
hθ(xi)

+ (1− yi)
1

1− hθ(xi)
∂

∂θj
(1− hθ(xi)

)
=

m∑
i=1

(
yihθ(xi)(1− hθ(xi)

hθ(xi)

− (1− yi)hθ(xi)(1− hθ(xi)
1− hθ(xi)

)
∂

∂θj
θTxi



Derivative continued ...

∂

∂θj
`(θ) =

m∑
i=1

(yi(1− hθ(xi))− (1− yi)hθ(xi))xij

=

m∑
i=1

(yi − hθ(xi)yi − hθ(xi) + hθ(xi)yi)xij

=

m∑
i=1

(yi − hθ(xi))xij



Gradient ascent update

So the gradient ascent update for logistic regression will be:

θk+1
j = θkj + α

m∑
i=1

(yi − hθ(xi))xij

for each θj , j = 0 . . . n simultaneously.



Newton’s method
I Another iterative method in calculus for finding the zeroes of

real-valued functions.

xk+1 = xk −
f (xk)

f ′(xk)

I For example:

y = x2 + 5x y′ = 2x+ 5 x0 = 5
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Newton’s method
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Newton’s method
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Newton’s method in optimization

I A function is minimized if it’s derivatives are 0.

I So in optimization we apply Newton’s method to the
derivative function:

θ(k+1) = θ(k) − `′(θ)

`′′(θ)

I This is second order method, because it uses second
derivatives.



Newton’s method update rule

When θ is a vector as we previously had:

θ(k+1) = θ(k) −H−1∇θ`(θ),

where ∇θ`(θ) is the vector of partial derivatives and H is called
Hessian and is the (n+ 1)× (n+ 1) matrix of second partial
derivatives:

H =


∂2`(θ)
∂θ0∂θ0

· · · ∂2`(θ)
∂θ0∂θn

· · · · · · · · ·
∂2`(θ)
∂θn∂θ0

· · · ∂2`(θ)
∂θn∂θn





Newton’s method in optimization

I Hessian must be positive definite

I This is true when the optimized objective function is convex.

I A matrix A is positive definite if xTAx is positive for any
nonzero vector x

I If Hessian is not positive definite then the objective function is
not convex and the Newton step might not point to a decent
direction.



Newton’s method for logistic regression

I For Hessian we need to compute second partial derivatives:

∂2`(θ)

∂θj∂θk
=

∂

∂θk

m∑
i=1

(yi − hθ(xi))xij

= −
m∑
i=1

hθ(xi)(1− hθ(xi))xijxik



Regularized logistic regression

I When data is linearly separable then maximum likelihood can
lead to severe overfitting.

I This is because the MLE solution is obtained when ‖θ‖ → ∞
I In this case the logistic sigmoid function will approach

Heaviside step function and each point is classified as 0 or 1
with probability 1.

I Overfitting can be prevented by adding regularization:

`reg(θ) = `(θ) +
λ

2
‖θ‖22


