Logistic Regression

Kairit Sirts

28.03.2014

Example:

Set of health data:

Age	BMI	high SBP
30	26,3	no
31	27,1	no
32	27,6	yes
32	24,1	no
32	24,4	yes

Goal: Learn to predict whether the person has a risk for high systolic blood pressure (SBP >140) based on the age and body mass index (BMI).

Example

high SBP as a function of BMI (body mass index)

Example: fitting linear regression

high SBP as a function of BMI (body mass index)

Example

Instead of the straight line we would like to fit a curve with range between 0 and 1 .
high SBP as a function of BMI (body mass index)

Logistic function

Logistic function is a sigmoid function and has the formula:

$$
g(z)=\frac{1}{1+e^{-z}}
$$

Note that:

$$
\begin{aligned}
& g(z)=0.5, \text { if } z=0 \\
& g(z)>0.5, \text { if } z>0 \\
& g(z)<0.5, \text { if } z<0
\end{aligned}
$$

Derivative of logistic function

Logistic function derivative has a nice form:

$$
g^{\prime}(z)=g(z)(1-g(z))
$$

How do we get it?

$$
\begin{aligned}
g(z) & =\frac{1}{1+e^{-z}} \\
g^{\prime}(z) & =-\frac{1}{\left(1+e^{-z}\right)^{2}}\left(1+e^{-z}\right)^{\prime} \quad \text { because }\left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}} \\
& =\frac{e^{-z}}{\left(1+e^{-z}\right)^{2}}=\frac{1}{1+e^{-z}} \frac{e^{-z}}{1+e^{-z}} \quad \text { because }\left(e^{-x}\right)^{\prime}=-e^{-x} \\
& =g(z) \frac{1+e^{-z}-1}{1+e^{-z}}=g(z)\left(\frac{1+e^{-z}}{1+e^{-z}}-\frac{1}{1+e^{-z}}\right) \\
& =g(z)(1-g(z))
\end{aligned}
$$

Hypothesis for logistic regression

Let's change the hypothesis by using the logistic function:

$$
h_{\boldsymbol{\theta}}(\mathbf{x})=g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)=\frac{1}{1+e^{-\boldsymbol{\theta}^{T} \mathbf{x}}}
$$

where:

$$
\boldsymbol{\theta}^{T} \mathbf{x}=\sum_{j=0}^{n} \theta_{j} x_{j} \quad \text { and by convention } x_{0}=1
$$

Again, note that:

$$
\begin{array}{ll}
g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)=0.5, & \text { if } \boldsymbol{\theta}^{T} \mathbf{x}=0 \\
g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)>0.5, & \text { if } \boldsymbol{\theta}^{T} \mathbf{x}>0 \\
g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)<0.5, \text { if } \boldsymbol{\theta}^{T} \mathbf{x}<0
\end{array}
$$

Probabilistic interpretation

We can again give the model the probabilistic interpretation and then use the maximum likelihood principle to find the parameters:

$$
\begin{aligned}
& P(y=1 \mid \mathbf{x} ; \boldsymbol{\theta})=h_{\boldsymbol{\theta}}(\mathbf{x})=g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right) \\
& P(y=0 \mid \mathbf{x} ; \boldsymbol{\theta})=1-h_{\boldsymbol{\theta}}(\mathbf{x})=1-g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)
\end{aligned}
$$

It is possible to write these two equations compactly with a single formula:

$$
P(y \mid \mathbf{x} ; \boldsymbol{\theta})=h_{\boldsymbol{\theta}}(\mathbf{x})^{y}\left(1-h_{\boldsymbol{\theta}}(\mathbf{x})\right)^{1-y}
$$

When $y=1$ then the second factor is equal to one and only the first factor counts. When $y=0$ then the first factor becomes equal to one and only the second factor counts.

Meaning of $\boldsymbol{\theta}^{T} \mathbf{x}$ in logistic regression

We can take the logistic function and express it in terms of $\boldsymbol{\theta}^{T} \mathbf{x}$:

$$
\begin{aligned}
g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right) & =\frac{1}{1+e^{-\boldsymbol{\theta}^{T} \mathbf{x}}}=\frac{1}{1+\frac{1}{e^{\boldsymbol{\theta}^{T} \mathbf{x}}}}=\frac{e^{\boldsymbol{\theta}^{T} \mathbf{x}}}{1+e^{\boldsymbol{\theta}^{T} \mathbf{x}}} \\
e^{\boldsymbol{\theta}^{T} \mathbf{x}} & =g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)\left(1+e^{\boldsymbol{\theta}^{T} \mathbf{x}}\right)=g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)+g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right) e^{\boldsymbol{\theta}^{T} \mathbf{x}} \\
g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right) & =e^{\boldsymbol{\theta}^{T} \mathbf{x}}-g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right) e^{\boldsymbol{\theta}^{T} \mathbf{x}}=e^{\boldsymbol{\theta}^{T} \mathbf{x}}\left(1-g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)\right) \\
e^{\boldsymbol{\theta}^{T} \mathbf{x}} & =\frac{g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)}{1-g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)} \\
\boldsymbol{\theta}^{T} \mathbf{x} & =\log \frac{g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)}{1-g\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)}
\end{aligned}
$$

This is called log-odds, where odds refers to the value where the probability of an event occurring is divided by the probability of not occurring $\left(\frac{p}{1-p}\right)$.

Likelihood

We first write down the formula for the probability of the whole data set (likelihood of the parameters):

$$
\mathcal{L}(\boldsymbol{\theta})=P(Y \mid \mathbf{X} ; \boldsymbol{\theta})=\prod_{i=1}^{m} h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)^{y_{i}}\left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)^{1-y_{i}}\right.
$$

As usual, we will prefer operating on log-likelihood:

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\log \mathcal{L}(\boldsymbol{\theta})=\log \prod_{i=1}^{m} h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)^{y_{i}}\left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)^{1-y_{i}}\right. \\
& =\sum_{i=1}^{m} \log h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)^{y_{i}}\left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)^{1-y_{i}}\right. \\
& =\sum_{i=1}^{m}\left(\log h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)^{y_{i}}+\log \left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)^{1-y_{i}}\right)\right. \\
& =\sum_{i=1}^{m}\left(y_{i} \log h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right)\right)
\end{aligned}
$$

Maximizing likelihood

- Now we can use the already familiar method of gradient descent to minimize the negative log-likelihood
- Or we can use the method of gradient ascent to maximise the log-likelihood
- The difference between gradient ascent and gradient descent is in the sign of the update step
- For gradient descent we subtract the update:

$$
\theta_{j}=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} \ell(\boldsymbol{\theta})
$$

- For gradient ascent we add the update:

$$
\theta_{j}=\theta_{j}+\alpha \frac{\partial}{\partial \theta_{j}} \ell(\boldsymbol{\theta})
$$

Derivative for the gradient method

- Take the derivative from the log-likelihood:

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} \ell(\boldsymbol{\theta}) & =\frac{\partial}{\partial \theta_{j}} \sum_{i=1}^{m}\left(y_{i} \log h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right)\right. \\
& =\sum_{i=1}^{m}\left(y_{i} \frac{1}{h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)} \frac{\partial}{\partial \theta_{j}} h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right. \\
& +\left(1-y_{i}\right) \frac{1}{1-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)} \frac{\partial}{\partial \theta_{j}}\left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right) \\
& =\sum_{i=1}^{m}\left(\frac{y_{i} h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right.}{h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)}\right. \\
& \left.-\frac{\left(1-y_{i}\right) h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right.}{1-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)}\right) \frac{\partial}{\partial \theta_{j}} \boldsymbol{\theta}^{T} \mathbf{x}_{i}
\end{aligned}
$$

Derivative continued ...

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} \ell(\boldsymbol{\theta}) & =\sum_{i=1}^{m}\left(y_{i}\left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right)-\left(1-y_{i}\right) h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right) x_{i j} \\
& =\sum_{i=1}^{m}\left(y_{i}-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right) y_{i}-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)+h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right) y_{i}\right) x_{i j} \\
& =\sum_{i=1}^{m}\left(y_{i}-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right) x_{i j}
\end{aligned}
$$

Gradient ascent update

So the gradient ascent update for logistic regression will be:

$$
\theta_{j}^{k+1}=\theta_{j}^{k}+\alpha \sum_{i=1}^{m}\left(y_{i}-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right) x_{i j}
$$

for each $\theta_{j}, j=0 \ldots n$ simultaneously.

Newton's method

- Another iterative method in calculus for finding the zeroes of real-valued functions.

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

- For example:

$$
y=x^{2}+5 x \quad y^{\prime}=2 x+5 \quad x_{0}=5
$$

Newton's method

Newton's method

Newton's method

Newton's method in optimization

- A function is minimized if it's derivatives are 0 .
- So in optimization we apply Newton's method to the derivative function:

$$
\theta^{(k+1)}=\theta^{(k)}-\frac{\ell^{\prime}(\theta)}{\ell^{\prime \prime}(\theta)}
$$

- This is second order method, because it uses second derivatives.

Newton's method update rule

When $\boldsymbol{\theta}$ is a vector as we previously had:

$$
\boldsymbol{\theta}^{(k+1)}=\boldsymbol{\theta}^{(k)}-H^{-1} \nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}),
$$

where $\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta})$ is the vector of partial derivatives and H is called Hessian and is the $(n+1) \times(n+1)$ matrix of second partial derivatives:

$$
H=\left[\begin{array}{ccc}
\frac{\partial^{2} \ell(\boldsymbol{\theta})}{\partial \theta_{0} \partial \theta_{0}} & \cdots & \frac{\partial^{2} \ell(\boldsymbol{\theta})}{\partial \theta_{0} \partial \theta_{n}} \\
\cdots & \cdots & \cdots \\
\frac{\partial^{2} \ell(\boldsymbol{\theta})}{\partial \theta_{n} \partial \theta_{0}} & \cdots & \frac{\partial^{2} \ell(\boldsymbol{\theta})}{\partial \theta_{n} \partial \theta_{n}}
\end{array}\right]
$$

Newton's method in optimization

- Hessian must be positive definite
- This is true when the optimized objective function is convex.
- A matrix A is positive definite if $\mathbf{x}^{T} A \mathbf{x}$ is positive for any nonzero vector \mathbf{x}
- If Hessian is not positive definite then the objective function is not convex and the Newton step might not point to a decent direction.

Newton's method for logistic regression

- For Hessian we need to compute second partial derivatives:

$$
\begin{aligned}
\frac{\partial^{2} \ell(\boldsymbol{\theta})}{\partial \theta_{j} \partial \theta_{k}} & =\frac{\partial}{\partial \theta_{k}} \sum_{i=1}^{m}\left(y_{i}-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right) x_{i j} \\
& =-\sum_{i=1}^{m} h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right) x_{i j} x_{i k}
\end{aligned}
$$

Regularized logistic regression

- When data is linearly separable then maximum likelihood can lead to severe overfitting.
- This is because the MLE solution is obtained when $\|\boldsymbol{\theta}\| \rightarrow \infty$
- In this case the logistic sigmoid function will approach Heaviside step function and each point is classified as 0 or 1 with probability 1.
- Overfitting can be prevented by adding regularization:

$$
\ell_{\text {reg }}(\boldsymbol{\theta})=\ell(\boldsymbol{\theta})+\frac{\lambda}{2}\|\boldsymbol{\theta}\|_{2}^{2}
$$

