Exercise 1. Let A be a set. Show that $A \cup A=A$.

Solution.

$$
A \cup A=\{x: x \in A \vee x \in A\}=\{x \in A\}=A .
$$

Exercise 2. Let A be a set. Show that $A \backslash A=\emptyset$.

Solution.

$$
A \backslash A=A \cap A^{\prime}=\{x: x \in A \wedge x \notin A\}=\emptyset .
$$

Exercise 3. Let A be a set. Show that $A \cap \emptyset=\emptyset$.
Solution.

$$
A \cap \emptyset=\{x: x \in A \wedge x \in \emptyset\}=\emptyset .
$$

Exercise 4. Let A, B, C be sets. Show that $A \cap(B \cap C)=(A \cap B) \cap C$.

Solution.

$$
\begin{aligned}
A \cap(B \cap C) & =A \cap\{x: x \in B \wedge x \in C\} \\
& =\{x: x \in A \wedge x \in B \wedge x \in C\} \\
& =\{x: x \in A \wedge x \in B\} \cap C \\
& =(A \cap B) \cap C .
\end{aligned}
$$

Exercise 5. Let A, B be sets. Show that $A \cap B=B \cap A$.

Solution.

$$
A \cap B=\{x: x \in A \wedge x \in B\}=B \cap A
$$

Exercise 6. Let A, B, C be sets. Show that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Solution.

$$
\begin{aligned}
A \cap(B \cup C) & =A \cap\{x: x \in B \vee x \in C\} \\
& =\{x \in A \wedge(x \in B \vee x \in C)\} \\
& =\{(x \in A \wedge x \in B) \vee(x \in A \wedge x \in C)\} \\
& =(A \cap B) \cup(A \cap C) .
\end{aligned}
$$

Exercise 7. Let A, B be sets. Show that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.
Solution. We must show that $(A \cap B)^{\prime} \subseteq A^{\prime} \cup B^{\prime}$ and $(A \cap B)^{\prime} \supseteq A^{\prime} \cup B^{\prime}$.

$$
\begin{aligned}
& x \in(A \cap B)^{\prime} \Longrightarrow x \notin(A \cap B) \Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \in A^{\prime} \vee x \in B^{\prime} \Longrightarrow x \in A^{\prime} \cup B^{\prime} \\
& x \in A^{\prime} \cup B^{\prime} \Longrightarrow x \in A^{\prime} \vee x \in B^{\prime} \Longrightarrow x \notin A \vee x \notin B \Longrightarrow x \notin A \cap B \Longrightarrow x \in(A \cap B)^{\prime}
\end{aligned}
$$

Therefore, $(A \cap B)^{\prime} \subseteq A^{\prime} \cup B^{\prime}$ and $(A \cap B)^{\prime} \supseteq A^{\prime} \cup B^{\prime}$. Hence, $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.

Exercise 8. Let A, B be sets. Show that $A \subseteq B$ iff $A \cap B=A$.
Solution. First, we show that $A=A \cap B \Longrightarrow A \subseteq B$.

$$
x \in A \cap B \Longrightarrow x \in A \wedge x \in B \Longrightarrow(x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B
$$

Next, we show that $A \subseteq B \Longrightarrow A=A \cap B$. For this, we first show that $A \subseteq B \Longrightarrow A \subseteq A \cap B$.

$$
\begin{aligned}
A \subseteq B & \Longrightarrow(x \in A \\
& \Longrightarrow x \in B) \Longrightarrow(x \in A \Longrightarrow x \in A \wedge x \in B) \\
& \Longrightarrow x \in A \cap B) \Longrightarrow A \subseteq A \cap B
\end{aligned}
$$

Finally, it is easy to see that $A \cap B \subseteq A$.

$$
x \in A \cap B \Longrightarrow x \in A \wedge x \in B \Longrightarrow x \in A \Longrightarrow A \cap B \subseteq A
$$

Exercise 9. Let A, B be sets. Show that $(A \backslash B) \cap(B \backslash A)=\emptyset$.

Solution.

$$
(A \backslash B) \cap(B \backslash A)=\left(A \cap B^{\prime}\right) \cap\left(B \cap A^{\prime}\right)=\left(A \cap A^{\prime} \cap B \cap B^{\prime}\right)=\emptyset
$$

Exercise 10. Let A, B, C be sets. Show that $(A \cup B) \times C=(A \times C) \cup(B \times C)$.

Solution.

$$
\begin{aligned}
(A \cup B) \times C & =\{(a, b):(a \in A \vee a \in B) \wedge b \in C\} \\
& =\{(a, b):(a \in A \wedge b \in C) \vee(a \in B \wedge b \in C)\} \\
& =(A \times C) \cup(B \times C)
\end{aligned}
$$

Exercise 11. Let A, B be sets. Show that $(A \cap B) \backslash B=\emptyset$.

Solution.

$$
(A \cap B) \backslash B=A \cap B \cap B^{\prime}=\emptyset .
$$

Exercise 12. Let A, B be sets. Show that $(A \cup B) \backslash B=A \backslash B$.

Solution.

$$
\begin{aligned}
(A \cup B) \backslash B & =(A \cup B) \cap B^{\prime}=\left(A \cap B^{\prime}\right) \cup\left(B \cap B^{\prime}\right) \\
& =\left(A \cap B^{\prime}\right) \cup \emptyset=\left(A \cap B^{\prime}\right)=A \backslash B .
\end{aligned}
$$

Exercise 13. Let A, B be sets. Show that $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.

Solution.

$$
\begin{aligned}
A \backslash(B \cup C) & =A \cap(B \cup C)^{\prime}=A \cap\left(B^{\prime} \cap C^{\prime}\right) \\
& =\left(A \cap B^{\prime}\right) \cap\left(A \cap C^{\prime}\right)=(A \backslash B) \cap(A \backslash C) .
\end{aligned}
$$

Exercise 14. Let A, B be sets. Show that $A \cap(B \backslash C)=(A \cap B) \backslash(A \cap C)$.

Solution.

$$
\begin{aligned}
(A \cap B) \backslash(A \cap C) & =(A \cap B) \cap(A \cap C)^{\prime}=(A \cap B) \cap\left(A^{\prime} \cup C^{\prime}\right) \\
& =\left(A \cap B \cap A^{\prime}\right) \cup\left(A \cap B \cap C^{\prime}\right)=A \cap B \cap C^{\prime}=A \cap(B \backslash C)
\end{aligned}
$$

Exercise 15. Let A, B be sets. Show that $(A \backslash B) \cup(B \backslash A)=(A \cup B) \backslash(A \cap B)$.
Solution.

$$
\begin{aligned}
(A \backslash B) \cup(B \backslash A) & =\left(A \cap B^{\prime}\right) \cup\left(B \cap A^{\prime}\right)=(A \cup B) \cap\left(A \cup A^{\prime}\right) \cap\left(B^{\prime} \cup B\right) \cap\left(B^{\prime} \cup A^{\prime}\right) \\
& =(A \cup B) \cap\left(A^{\prime} \cup B^{\prime}\right)=(A \cup B) \cap(A \cap B)^{\prime}=(A \cup B) \backslash(A \cap B)
\end{aligned}
$$

