Notes on Probabilistic Cipher Model

Probabilistic Cipher Model

2 idependent random variables: X with ranges R_{X} (the set of plaintexts), and Z with range R_{Z} (the key space).

No assumptions are made w.r.t. the probability distribution of X. It is assumed that Z is uniformly distributed.

The encryption function $E_{z}(x)=y$. The set of ciphertexts is the image of $X \times Z$ under \sim :

$$
Y=(X \times Z) / \sim:(a, b) \sim(c, d) \Longleftrightarrow E_{b}(a)=E_{c}(d) .
$$

We will consider the factor space $X Z$ with range $R_{X Z}$.

Information-Theoretic Security of a 1-bit XOR Cipher

$$
\begin{aligned}
\operatorname{Pr}_{X Z}[Y=y] & =\sum_{x, z} \operatorname{Pr}_{X Z}[X=x, Z=z][x \oplus z=y]=\sum_{x, z} \operatorname{Pr}_{X Z}[X=x] \operatorname{Pr}_{X Z}^{\operatorname{Pr}}[Z=z][x \oplus z=y] \\
& =\sum_{x} \operatorname{Pr}_{X Z}^{\operatorname{Pr}}[X=x] \sum_{z} \underbrace{\operatorname{Pr}_{X Z}^{p}[Z=z]}_{\text {constant }}[x \oplus z=y]=\operatorname{Pr}_{X Z}^{\operatorname{Pr}_{Z}}[Z=z] \underbrace{\sum_{x} \operatorname{Pr}_{X Z}^{\operatorname{Pr}_{Z}}[X=x]}_{=1} \underbrace{\sum_{z}[x \oplus z=y]}_{=1} \\
& =\operatorname{Pr}_{X Z}[Z=z]=\frac{1}{2} .
\end{aligned}
$$

This means that Y is uniformly distributed. The 1-bit XOR cipher is information-theoretically secure, if the ciphertexts are independent of the plaintexts: $\operatorname{Pr}_{X}[X=x \mid Y=y]=\operatorname{Pr}_{X Z}[X=x]$. This means that the ciphertext contains no information about the plaintext, and cannot leak it. Since

$$
\underset{X Z}{\operatorname{Pr}}[X=x \mid Y=y]=\frac{\underset{X Z}{\operatorname{Pr}}[X=x, Y=y]}{\underset{X Z}{\operatorname{Pr}}[Y=y]},
$$

and $\operatorname{Pr}_{X Z}[Y=y]$ is known, we need to calculate the joint probability $\operatorname{Pr}_{X Z}[X=x, Y=y]$.

$$
\begin{aligned}
\operatorname{Pr}_{X Z}[X=x, Y=y] & =\sum_{z} \operatorname{Pr}_{X Z}[X=x, Z=z][x \oplus z=y]=\sum_{z} \operatorname{Pr}_{X Z}[X=x]{\underset{X Z}{X Z}[Z=z][x \oplus z=y]}_{\operatorname{Pr}_{X}[Z}=\operatorname{Pr}_{X Z}[X=x] \sum_{z} \underbrace{\operatorname{Pr}_{X Z}^{r}[Z=z]}_{\text {constant }}[x \oplus z=y]=\operatorname{Pr}_{X Z}^{\operatorname{Pr}}[X=x] \underbrace{\operatorname{Pr}_{X}[Z=z]}_{=\frac{1}{2}} \underbrace{\sum_{z}[x \oplus z=y]}_{=1} \\
& =\frac{1}{2} \operatorname{Pr}_{X Z}[X=x] .
\end{aligned}
$$

The conditional probability of a plaintext given a ciphertext is

$$
\left.\operatorname{Pr}_{X Z}[X=x \mid Y=y]=\frac{\operatorname{Pr}}{X Z}[X=x, Y=y]\right) \frac{\frac{1}{2} \underset{X Z}{\operatorname{Pr}}[X=x]}{\operatorname{Pr}_{X}[Y=y]}=\frac{\operatorname{Pr}_{X Z}}{\frac{1}{2}}[X=x],
$$

and therefore the 1-bit XOR cipher is information-theoretically secure.

Theorem 1. If Z is independent of X, Z is uniformly distributed and for every plaintext x and for every ciphertext y there is a unique key z such that $E_{z}(x)=y$, then the cipher is unbreakable. Proof. See lecture slides.

It is possible to show that in a 1-bit XOR cipher for every pair of plaintext x and ciphertext y there is a unique key z such that $x \oplus z=y$.

Xor operation is idential to addition in \mathbb{Z}_{2}. Therefore, we can encode the encryption function as

$$
y=x \oplus z \Longleftrightarrow y=x+z \quad(\bmod 2) .
$$

For every plaintext-ciphertext pair (x, y) there is a key $z=y-x(\bmod 2)$ such that $x+z=$ $x+y-x=y$. To show that such z is unique, assume there exists another key $z^{\prime} \neq z$ such that $x+z^{\prime}=y(\bmod 2)$. We have a system of two equations

$$
x+z=y \quad(\bmod 2), x+z^{\prime}=y \quad(\bmod 2) .
$$

Subtracting the second equation from the first one, we get $z-z^{\prime}=0(\bmod 2)$ which means that $z \equiv z^{\prime}(\bmod 2)$.

Since for every plaintext-ciphertext pair (x, y) there exists a unique key z, by Theorem 1 the cipher is information-theoretically secure.

Information-Theoretic Security of a Shift Cipher

The encryption function of a shift cipher is $y=x+z(\bmod 26)$. It is possible to show that for every plaintext-ciphertext pair (x, y) there exists a unique key $z=y-x(\bmod 26)$. Hence, by Theorem 1 the shift cipher is information-theoretically secure.

Inforation-Theoretic Security of a Substitution Cipher

A substitution cipher is a cipher, where the key is a mapping which puts every plaintext into one-to-one correspondence with a unique ciphertext. This is the size of the key space. The encryption function $E_{z}(x)=y$ is the mapped value assigned by the key for the specific plaintext $y=z(x)$. Since the key is a bijection, it is invertible, and ciphertext can be decrypted into plaintext.

Since there are 26 letters in English alphabet, there are 26! possible mappings. If we fix one specific plaintext-ciphertext pair $\left(x_{i}, y_{i}\right)$, then there exist 25 ! permutations of the remaining letters. In other words, for every plaintext-ciphertext pair (x, y) there exist 25 ! unique keys z such that $y=z(x)$. Therefore, we cannot prove information-theoretical security using Theorem 1 above.

Instead, we will show that $\operatorname{Pr}_{X}[X=x \mid Y=y]=\operatorname{Pr}_{X Z}[X=x]$.

$$
\begin{aligned}
\operatorname{Pr}_{X Z}[Y=y] & =\sum_{x, z} \operatorname{Pr}_{X Z}[X=x, Z=z][z: x \mapsto y]=\sum_{x, z} \operatorname{Pr}_{X Z}[X=x]{\underset{X Z}{X}}_{\operatorname{Pr}}[Z=z][z: x \mapsto y] \\
& =\sum_{x} \operatorname{Pr}_{X Z}[X=x] \sum_{z} \underbrace{\operatorname{Pr}_{X Z}^{P}[Z=z][z: x \mapsto y]=\underbrace{\operatorname{Pr}_{X Z}^{P}[Z=z]}_{=\frac{1}{26!}} \underbrace{\sum_{x} \operatorname{Pr}_{X Z}^{\operatorname{Pr}_{Z}}[X=x]}_{=1} \underbrace{\sum_{z}^{\sum_{z}[z: x \mapsto y]}}_{=25!}}_{\text {constant }} \begin{aligned}
26!
\end{aligned} \\
& =\frac{25!}{26!} .
\end{aligned}
$$

This tells us that Y is uniformly distributed.

$$
\begin{aligned}
& \operatorname{Pr}_{X Z}[X=x, Y=y]=\sum_{z} \operatorname{Pr}_{X Z}[X=x, Z=z][z: x \mapsto y]=\sum_{z} \operatorname{Pr}_{X Z}[X=x] \operatorname{Pr}_{X Z}[Z=z][z: x \mapsto y] \\
& =\operatorname{Pr}_{X Z}[X=x] \sum_{z} \underbrace{\operatorname{Pr}_{X Z}[Z=z]}_{\text {constant }}[z: x \mapsto y]=\operatorname{Pr}_{X Z}^{\operatorname{Pr}}[X=x] \underbrace{\operatorname{Pr}_{X Z}[Z=z]}_{=\frac{1}{26!}} \underbrace{\sum_{z}[z: x \mapsto y]}_{=25!} \\
& =\frac{1}{26} \operatorname{Pr}_{X Z}[X=x] . \\
& {\underset{X r}{X}}_{\operatorname{Pr}}[X=x \mid Y=y]=\frac{\operatorname{Pr}_{X Z}[X=x, Y=y]}{\underset{X Z}{\operatorname{Pr}}[Y=y]}=\frac{\frac{1}{26} \operatorname{Pr}_{X Z}[X=x]}{\frac{1}{26}}=\operatorname{Pr}_{X Z}[X=x] .
\end{aligned}
$$

Therefore, the substitution cipher is information-theoretically secure.

