

Real-time Operating Systems and
Systems Programming

Programming an Operating System

Summary

● Programming
● Tasks
● Scheduling
● Context Switches
● Mutexes

● Michael Barr, Programming Embedded
Systems in C and C++

A Misconception

● “Operating system internals are complex.”
● Software companies like the thought
● but speed...

● Embedded OS even more simple
● Single user
● No disk drivers or filesystem
● No GUI

Os under discussion ADEOS

ftp://ftp.oreilly.com/examples/nutshell/embedded_c/

● A Decent Embedded Operating System

Tasks

● Tasks are parallel in only seemingly
● Book analogy
● For a task you have to keep its state

somewhere
● Pointer to next instruction
● Address of the top of stack (stack pointer)
● Contents of processors flag & general registers

● Task control block usually, but object in
example

Task States

● Ready <> Running > Waiting > Ready
● Running-Ready – task switching
● Waiting = Blocking
● Only one running at time

Task Creation

● ADEOS allows only task creation
● When (and if) a task function returns, task is

deleted
● Construction needs a function, priority and

stack size.

Scheduler

● Decides which task gets to run
● Example uses priority list for task scheduling
● FIFO behaviour in case of conflicts
● 255 priority levels

Scheduling Points

● Events during which scheduler is invoked
● (Task creation has one)
● os.schedule() runs

Clock Tick

● Runs on timer interrupts
● Waking the tasks which wait for timer to expire

Ready List

● Ordinary linked list
● Priority queue
● Next task always on top

Idle task

● Empty loop
● Hidden from application developer
● Has id and priority of 0
● Always ready

schedule()

● Looks for top task, if it is the running task, good
● Otherwise switches tasks
● Note that tasks start only after initialization of

scheduler (since scheduler is invoked on task
creation too)

Example of task creation

Context Switch

● Architecture specific
● Must be written in assembler language
● restoreContext() and saveContext()
● Tasks wake in saveContext() and a clever jump

is done to distinguish between saving and
restoring.

Mutexes

● Multitasking aware binary flag
● Setting and clearing are atomic
● Interrupts are disabled
● Implementation: flag + waiting list
● Initialization simple

Mutex setting and clearing

● Setting
● If taken, process goes to waiting state until released
● Scheduling called

● Releasing
● Does not block
● On release a context switch might occur due to

scheduling

Critical section

● Deadlock?
● Priority inversion?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

