
1

ITI8531 - Tarkvara süntees ja
verifitseerimine

Software synthesis and verification

Prof. Jüri Vain

Spring 2016

2

Formal methods – why?
Example: auto-pilot
Problem:

Design a module in aircraft auto-pilot that avoids
collision with other planes.

One possible design solution:
When distance is 1km, give warning to other plane
and notify pilot. When distance is 300m, and no
changes in the course of other plane, go up.

3

Problem with solution
 Both planes have the same software. Both

go up...

 Some famous bugs
 several NASA space missions lost,
 Intel floating point processor, etc.

 Hard to predict all behaviours!
 US aircraft went to southern hemisphere and …

flipped when crossing the equator
 Software written for US F-16

 accidents when reused in Israeli aircraft flown over the
Dead Sea

(altitude < sea level)
4

This happens in real software!

5

Moore’s Law :
The performance of microprocessors
doubles every 18 months

Proebsting’s law : Compiler technology doubles the performance
of typical programs every 18 years
Gilder’s Telecosom Law: 3x bandwidth/year for 25 more years

Design costs tend to grow faster than the size of the system

Why FMs? (I)
Increasing complexity/costs of system development

 Today:
 10 Gbps per channel
 4 channels per fiber: 40 Gbps
 32 fibers/bundle = 1.2 Tbps/bundle

 In lab 3 Tbps/fiber (400 x WDM)
 In theory 25 Tbps per fiber
 1 Tbps = USA 1996 WAN bisection bandwidth

1 fiber = 25 Tbps

6

Why FMs? (II)
Increasing dependability of systems

 Everything important depends on computers:
 stir by wire aircrafts
 banking
 stock market
 manufacturing workflow, …

 Quality is influenced by increasing
 functionality
 security
 mobility
 new business processes, … Ariadne 5 accident

The launch failure brought the high risks associated with complex computing systems to the attention of
the general public, politicians, and executives, resulting in increased support for research on ensuring the
reliability of safety-critical systems. The subsequent automated analysis of the Ariane code was the first
example of large-scale static code analysis by abstract interpretation

http://en.wikipedia.org/wiki/Safety-critical_system
http://en.wikipedia.org/wiki/Static_code_analysis
http://en.wikipedia.org/wiki/Abstract_interpretation

7

Implications of complexity & dependability growth

 Quality dilemma: drop quality for more features
 Testing and verification are the bottlenecks of sw processes
 In CFS > 50% of development costs are spent on error

detection/diagnosis/repairment

⇒ FM research challenge: find efficient methods for sw synthesis,
test and verification

⇒ Trends: combine FM and testing in the sw process
FMs for isolated tasks integrating FMs into full life cycle

⇒ Current practice: MDD (Model Driven Development)

Experts in FM are increasingly needed in high-tech industry,
specially in cyber-physical systems (robotics, smart energy
grids, smart houses, mobile applications etc).

8

9

Test & Verification
 Testing

 Standard definition: dynamic execution / simulation of a system
 Present view: tests have to be integrated in development process
 Extreme view: testing should “drive” the development process

 Verification
 Standard definition: static checking, symbolic execution.
 In hw design community: verification means also testing

 Our view: Testing ≠ Verification
 Testing is partial exploration method (not all executions are

covered)
 Verification is complete method but more costly than testing

10

Verification: process and actors

$$$
SPEC

Verifier/ testing person

Informal
requirements

Code

User

Does the pgm.
what’s expected?

Ideas & wishes

Customer Analyst

Developer

Is spec/design/
program correct

How to formalize?

Bug
report

Different feedback flows are possible!

Steps covered with FMs

Design

Closer look on Model-Based Testing (MBT)
process

 Goal: Check if real system conforms
with requirements specification.

 Advantages/disadvantages
+ model hides irrelevant details of

implementation;
+ automatic generation and execution of

tests;
+ systematic coverage of requirements
+ relevant in regression testing
- modeling overhead!

11

12

Formal Methods in general
 FMs deal with formal notations – state, type, data refinement,...
 Formal notions have rigorous semantics
 Emphasizes static / symbolic reasoning about abstractions

(standard definition of verification falls into this category)
 Too narrow view on FMs in digital design – covers only

equivalence and model checking, but there is much more

 FMs are not esoteric, e.g. compilation in a broad sense is a FM
(high-level description is translated into low-level description).

13

Focus of this course

 Tool-supported construction of and reasoning
about the correctness of programs and
systems.

14

Formal Methods: Classification

Z
ASM

Some profiles of
UML??

Formal
Specification

SDL

Synchronous
Languages

Compiler tech.

Model checking
Theorem Proving
Static analysis

Equivalence
Checking

SAT
Formal
Verification

Formal
Synthesis

15

Formal Specification
= stating structure, behavior, properties of some artifact in formal way

Formalization
 abstracts from unnecessary implementation details
 provides rigorous mathematical notation
 abstraction allows high-level reasoning while implementation details

are not clear yet
 allows to avoid ambiguous or inconsistent specifications.

Difficulties:
 Difficult to comprehend by engineers
 Few practical tools for refinement/ checking/ feature oriented specs

 good example: ASM (Gurevich), B-method, Bogor,...

16

Formal Synthesis I
Initial Formal Spec

1st Refinement

3rd Refinement

2nd Refinement

4th Refinement
(last refinement)

Compiler

Compiler

C Program

17

Formal Synthesis II
 integrates development process and verification
 incremental refinement steps guided by domain

heuristics
 splits large verification tasks (divide et empera) …
… but forces dramatic change in development process
 it works but it is costly
 each refinement step eiher

 is correct by construction or
 uses FMs for verification

 example: B-Method and Rodin tool

19

Formal Verification
 General assumption: requirements spec and system spec defined
 formal verification checks whether implementation representation

satisfies requirements specification or not.
 full blown verification,e.g., “post mortem verification” is difficult.
 simplifications:

 focus on simple partial specifications
 feature orientation:

 type safety,
 functional equivalence of systems,…

 methods (implemented in tools):
 simple algorithms for deducing isolated properties directly
 complex algorithms for hard or even generally undecidable problems

20

Classes of verification methods
 Boolean methods:

SAT, BDDs, ATPG, combinational equivalence check
 Finite state methods:

bisimulation and equivalence checking of automata,
model checking (MC)

 Term based methods:
term rewriting, resolution, tableaux, theorem proving

 Abstraction based methods
BDDs, symbolic MC, theorem proving

21

Typical Formal Methods for Software

 Testing
 Deductive verification
 Model checking (automatic verification)
 Static analysis
 Combinations of the above

22

Testing

Model
Checking

Deductive
Verification

23

(Traditional) testing
 Executing paths in the software in order to exercise (and

discover) errors
 The traditional and still most common method in sw industry

+
 Partially manual, some automation tools exist (for running

tests and reporting) -
 Applied directly to software (some times small modifications

necessary to support testing, e.g. resets) +
 Not comprehensive. Errors often survive -
 Based on intuition and experience of tester +/-
 Formal spec is not needed +/-

Testing

24

Deductive Verification
 Apply theories and logic inference to prove properties

of a system specification formally
 Based on mathematical principles +
 Requires expertise in logic, math and tools usage -
 Highly time consuming -
 Susceptible to discrepancies between sw and model-
 Practical only with tool support -
 Applicable on small and medium size examples -
 Requires accurate specification -
 If doable provides full certainty of correctness +

Deductive
Verification

25

Model Checking
 Uses graph theory and automata theory to verify properties of

programs automatically
 Requires modelling and specification
 State space explosion: often bad modeling causes insufficient

memory and exponential time growth
 Algorithmic state space exploration makes it limited to finite

state systems
 Many heuristics to reduce time/space

Model
Checking

26

Comparing verification methods
Method

Criterion
Testing Deductive

Verification
Model

Checking
Size of system Small-Very large Limited examples 100s-1000s lines
Time Minutes-Hours Days-Weeks Minutes-Hours

Expertise needed Test engineers/
programmers

Mathematicians,
Comp-Sci., Logic.

Comp.-Scientists/
sw engineers

Popularity SW/HW industry Mostly research Reserch/industry

Specification Informal
requirement docs

Logic or
automata based

Logic or
automata based

Modelling /
corrections

Not needed /
code correction

Must /via formal
representation

Must/via formal
representation

27

Model
Checking

Deductive
Verification

Verification of Abstraction

 General startegy
 Do abstractions to reduce the

system state space (e.g., to
finite states, if possible).

 Then verify correctness
properties of that abstraction.

28

Testing

Model
Checking

Deductive
Verification

29

Testing

Model
Checking

Deductive
Verification

30

Testing

Model
Checking

Deductive
Verification

31

Testing

Model
Checking

Deductive
Verification

Symbolic Verification / Testing

 Use symbolic verification to
generate abstract test path
conditions.

 Derive the explicit (executable)
paths by model checker using
abstract paths and temporal
formulas describing test goals.

32

Foci of the course (refined)
 Development by contracts
 Techniques: MC, deductive verification, refinement
 Tools (based on different theoretical backgrounds):

 Theoretical background
 Semantics / Algorithms / Datastructures

 How does it work?
 Arhitecture/ Capacity and restrictions

 Tool in work: hands-on experience with Uppaal, ...
 Labs:

 Read-write over unreliable channel
 Self-stabilizing systems
 Scheduling

33

Labs
 We will use model checker UppAal to check the

properties of specifications.

 We use theorem proving assistant Prover9 to
prove formala of propositional 1-st order calculi
and

 cofoja – Contract for Java

34

Server for experiments
 Tools that run under Linux will be available in server

Dijkstra
 If you have X server (you run Linux, FreeBSD,

MacOSX, ...) then just:
 > ssh -X dijkstra.cs.ttu.ee

 Under Windows you need additional software, e.g.
XWin32 (commercial), to run programs with GUI
from dikstra.cs.ttu.ee. Use shell account by using

e.g. Putty as the client.

35

Course organization I
 Lecture: Prof. Jüri Vain

 Thu 12.00 – 13.30
 Room ICT-A1

 Labs
Instructors: Evelin Halling, Jishu Guin

 Wed 16.00 – 17.30
 Room ICT- 405

36

Course organization II
 13 lectures, 8 labs
 3 (small) lab projects
 3 tests (> 50% means pass)
 Exam (written)

37

Topics covered
 Foundations: logics, models & specifications
 Algorithmic verification using model checking
 Contract based development
 Deductive verification of (sequential and parallel)

programs using Hoare logics
 Verification of RT- systems
 Verifying fault-tolerance
 Intro to model based testing

38

Home reading
Textbooks:
 C. Baier, J.-P. Katoen. Principles of model checking, vol.

26202649.MIT press Cambridge, 2008.
 Mike Gordon: Specification and Verification I.

http://www.dcc.fc.up.pt/~nam/web/resources/vfs13/Notes.pdf

Other links:
 Formal methods homepage http://vl.fmnet.info/
 Formal Methods Europe: www.fmeurope.org
 Model checker: Uppaal: www.docs.uu.se and www.uppaal.com

 The reading list will be updated dynamically during the course

http://www.dcc.fc.up.pt/%7Enam/web/resources/vfs13/Notes.pdf
http://vl.fmnet.info/
http://www.fmeurope.org/
http://www.docs.uu.se/
http://www.uppaal.com/

	ITI8531 - Tarkvara süntees ja verifitseerimine �Software synthesis and verification
	Formal methods – why? Example: auto-pilot
	Problem with solution
	This happens in real software!
	Why FMs? (I) �Increasing complexity/costs of system development
	Why FMs? (II)�Increasing dependability of systems
	Implications of complexity & dependability growth
	Slide Number 8
	Test & Verification
	Verification: process and actors
	Closer look on Model-Based Testing (MBT) process
	Formal Methods in general
	Focus of this course
	Formal Methods: Classification
	Formal Specification
	Formal Synthesis I
	Formal Synthesis II
	Formal Verification
	Classes of verification methods
	Typical Formal Methods for Software
	Slide Number 22
	(Traditional) testing
	Deductive Verification
	Model Checking
	Comparing verification methods
	Verification of Abstraction
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Symbolic Verification / Testing
	Foci of the course (refined)
	Labs
	Server for experiments
	Course organization I
	Course organization II
	Topics covered
	Home reading

