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Introduction

Given a set of data points, partition them into groups with respect to
chosen similarity criteria.

Data summarization.

Discover the structure of the set.

Part of preprocessing.
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Feature selection

Given a set of data points, partition them into groups with respect to
chosen similarity criteria.

Filter Models
I Predictive Attribute Dependence
I Entropy

E = −
m∑
i=1

[
pi log(pi) + (1− pi) log(1− pi)

]
I Hopkins Statistic

H =

r∑
i=1

βi

r∑
i=1

(αi + βi)

.

Wrapper models
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Entropy 1
Underlying idea is that features with uniformly distributed values
carry less information compared to those distributed non uniformly.
Distance distributions of well-clustered sets should be different from
those uniformly distributed.

-10 -5 0 5 10 15 20
-30

-20

-10

0

10

20
Well clustered  data set

-10 -5 0 5 10 15 20
-30

-20

-10

0

10

20
Uniformly distributed data set

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5
104

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5
104
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Entropy 2

Consider k− dimensional subset of the feature set.

Using φ ranges for each dimension discretize the data set. This step
results into m = φk regions.

Observe, that for each evaluated feature subset m is expected to be
approximately the same.

E = −
m∑
i=1

[
pi log(pi) + (1− pi) log(1− pi)

]
.

where pi is the proportion of the points in the region i, m - total
number of regions. Large values of E indicate poor clustering
behaviour.
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Measures

Hopkins statistics. Let D be the data set to investigate and R is a
representative sample of D, of power r. S is a synthetic data set of r data
points randomly generated from the same domain. Let α1, . . . αr be the
distances of each point of R to the nearest neighbour in D and β1, . . . βr
are the distances of each point of S to the nearest neighbour in D. The
Hopkins statistic is defined as follows:

H =

∑r
i=1 βi∑r

i=1(αi + βi)
.

Higher values of H indicate highly clustered data.
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Feature selection

Filter Methods: Use Entropy or Hopkins Statistics to decide set of
features leads best clustering behaviour. Filter methods meay be
applied on the stage of preprocessing.

Warper models: clustering algorithm is used to evaluate the quality of
subset of features.
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Classification of clustering techniques
Most common clustering techniques may be classified as follows:

Representative based techniques: k-means, k-medians, k-medoids,
etc. Each cluster has a representative which is either the element of
the data set or an element from the same space as all other elements
of the dataset. Shape of the clusters is affected by the choice of
distance function. Number of clusters is usually a hyperparameter.

Hierarchical clustering techniques: Agglomerative and Divisive
techniques. Not always relies on the distance function. Different
levels of clustering granularity provide different provide different
application specific insides.

Grid and Density based techniques: Relies on the local density of
the data points. Well suited for the clusters of irregular shapes.

Probabilistic algorithms: EM and EM-like algorithms.

Hyperparameter is the parameter which value is not determined during the
learning.
As a result of clustering each element is assigned label describing which
cluster element belongs. NB! Similarity and distances are synonyms.
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K - means

K - means is one of the most popular algorithms belongs to the class of
iterative descent methods.

It is intended for the quantitative variables.

Squared Euclidean distance as dissimilarity measure.

The idea is to assign close points to the same cluster. Minimize
natural loss (”energy”) function.

W (C) =
1

2

K∑
k=1

Nk

∑
C(i)=k

|xi − x̄k|2.

where x̄k is the mean vector associated with the kth cluster
(centroid). Nk =

∑N
i=1 I(C(i) = k).

Iterative descent algorithm is used to achieve this goal.
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Representative based clustering

K-means:

Hyperparameters: K - number of desired clusters, distance function.

Intialize: generate K random points from the same limits as initial
dataset. These points are referred as centroid.

Repeat:
I For each point assign the label of closest centroid.
I For each label recompute centroid as the mean of all points with given

label.

Until converge.

Report labels of each point.

Other representative based techniques differ only by the way representative
is find.
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K-means clustering example
Steps 1 - 4
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K-means clustering example
Steps 5 - 8
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K - means, example discussion

Convergence criteria?
I Assignments do not change?
I Minimum of a loss function?

Relations to the EM-algorithm? Instead of maximizing likelihood K -
means minimizes loss function.

K - means best perform when clustered dataset composed of
spherical or similar subsets.

How to validate quality of clustering?
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Validation

Sum of square distances to centroids. (SSQ) This criteria is suited for K-means
since it minimizes the loss function. (With reservations)

Intracluster to intercluster distance ratio. Sample r points from the data set.
Let P be the set of pairs that belong to the same cluster and Q the set of
remaining pairs.

II =

∑
(xi,xj)∈P

S(xi, xj)/|P |∑
(xi,xj)∈Q

S(xi, xj)/|Q|

Small values of the ratio indicate better clustering behaviour.

Silhouette coefficient

s(i) =
Dout

mini
−Din

avgi

max{Dout
mini

, Din
avgi}

where Din
avgi is the average distance of point xi to points within the cluster it

belong to. Compute average distance of point xi to the points of each cluster. Let
Dout

mini
is the minimum of these average distances. s(i) ∈ (−1, 1). Overall

coefficient is the average of the individual points coefficients. Large positive values
indicate highly separated clusters.
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Silhouette coefficient
Considered to be most popular criteria for clustering validation.
Silhouette plot is the graphic representation of the silhouette
coefficient.
Overall silhouette coefficient may be used to determine number of
clusters.
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Impact of distance functions
NB! Always observe if distance function is defined for the given dataset
and if using it makes sense from the viewpoint of interpretation.
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Limitations
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Hierarchical clustering: Agglomerative clustering
Some times referred as bottom-up

Algorithm

Initialize n× n distance matrix M
Repeat

I Choose closest pair of clusters (i, j) based on M.
I Merge clusters i and j and update matrix M.

Until termination criterion.

Return cluster labels for each point.

A B

C D

E

F

A B C D E F

How to compute distance between two clusters?
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Group-based statistics
Also referred as linkage.

Best (single) linkage. Distance is equal to the minimum distance
between all pairs of elements (from two groups). Suitable to discover
clusters of arbitrary shape. Drawback noise points may merge distant
clusters.

Worst (complete) linkage.(Complete linkage method) Distance is
equal to the maximum distance between all pairs of elements (from
two groups). Attempts to minimize maximual diameter of the cluster.

Group average linkage. Distance between two groups is equal to the
average of the distances between all pairs of elements (from two
groups).

Closest centroid. Clusters with closest centroid are merged.

Variance based criterion. Minimizes the change in the objective
function a result of merging.

Ward’s method, like previous but instead of variance observes changes
in some od squared error.
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Top-down divisive methods

Algorithm

Initialize tree T to root containing dataset D
Repeat

I Select a lead node L in T based on predefined criterion.
I Use splitting algorithm A to split L into L1, . . . ,Lk .
I add L1, . . . ,Lk as children of L in T .

Until termination criteria.
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Limitations
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Grid- and density- based methods

One of the major problems with distance-based and probabilistic methods
is that the shape of the underlying clusters is already defined implicitly by
the underlying distance function or probability distribution. Possible
solutions:

Grid- based methods

Density- based methods

Graph- based algorithms

Nonnegative matrix factorization
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Grid- and Density-based clustering

Explores the idea, that clusters are of a different density than space
between them. May be see as the sub class of agglomerative methods.

Generic Grid:

Hyperparameters: Ranges and density threshold τ .

Discretize each dimension into p ranges.

Determine dense grid cells at level τ .

Create graph in whichdense grids are connected if they are adjacent.

Determine connected components of the graph.

Return cluster indexes for each point.
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DBSCAN

Let D denote the data set, τ - density threshold and ε - radius of the
neighborhood.

Definition

Core point: A data point is defined as the core point, if its ε -
neighbourhood contains at least τ data points.

Definition

Border point: A data point is defined as the border point, if its ε -
neighbourhood contains at least one another data point of D and at least
one core point.

Definition

Noise point: Is defined as data point of D which neither core point nor
border point.
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DBSCAN

Algorithm:

Determine Core, border and noise points for given ε and τ .

Create graph in which core points are connected (if they are within ε
of one another ).

Assign each border point to a connected component.

Return cluster indexes for each point.
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EM-algorithm

Let us consider K-Means from the probabilistic point of view.

(E-step) Each data point of the set D has a probability belonging to
cluster j, which is proportional to the scaled and exponentiated
Euclidean distance to each representative Yj . In the k-means
algorithm, this is done in a ”hard” way, by choosing the smallest
Euclidean distance to the representative of Yj .

(M-step) The center Yj is the weighted mean over all the data points
where the weight is defined by the probability of assignment to cluster
j. The hard version of this is used in k-means, where each data point
is either assigned to a cluster or not assigned to a cluster (i.e., 0-1
probabilities).
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EM-algorithm

Assumption: the data was generated from a mixture of k distributions
with probability distributions G1 . . .Gk. Each distribution Gi represents a
cluster and is also referred to as a mixture component.

(E-Step) Given the current value of the parameters in , estimate the
posterior probability P (Gi|Xj ,Θ) of the component Gi having been
selected in the generative process, given that we have observed data
point Xj . The quantity P (Gi|Xj ,Θ) is also the soft cluster
assignment probability that we are trying to estimate. This step is
executed for each data point Xj and mixture component Gi.

(M-Step) Given the current probabilities of assignments of data
points to clusters, use the maximum likelihood approach to determine
the values of all the parameters in Θ that maximize the log-likelihood
fit on the basis of current assignments.
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Gaussian

Gaussian or normal distribution. Its probability density function is
given by

N (x|µ, σ) =
1√

2πσ2
exp
(
− 1

2σ2
(x− µ)2

)
where µ is the mean,σ is the variance and

√
2πσ2 is the normalization

constant.

Multivariate Gaussian or Multivariate Normal (MVN). Probability
density function is given by.

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp
[
−1

2
(x− µ)TΣ−1(x− µ)

]
where µ is the mean vector, Σ is covariance matrix of the data set, d
is the dimensionality of the data set.
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Geometric interpretation

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp
[
−1

2
(x− µ)TΣ−1(x− µ)

]
Expression under the exponent is Mahalanobis distance between point
x and mean.
Perform an eigendecomposition of Σ.

Σ−1 = U−TΛU−1 = UΛ−1UT =

D∑
i=1

1

λi
uiu

T
i

where ui is the i’th colum of U (ith eigenvector).
Rewrite Mahalanobis distance and denote yi = uTi (x− µ)

(x− µ)TΣ−1(x− µ) = (x− µ)T
D∑
i=1

1

λi
uiu

T
i (x− µ)

=

D∑
i=1

1

λi
(x− µ)Tuiu

T
i (x− µ) =

D∑
i=1

y2i
λi
.
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Geometric interpretation: example

(x− µ)TΣ−1(x− µ) =

D∑
i=1

y2i
λi
.

Contours of equal probability density of a gaussian lie along ellipses.
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Likelihood

Likelihood: Roles of parameters and outcomes distinguish likelihood
from probability. Probability describes how possible the outcome
before data is available, given the values of parameter. Likelihood
describe possibility of parameter values given available data.

I Discrete: Let X be a discrete random variable and p its probability
mass function then

L(θ|x) = pθ(x),

is called likelihood function of θ given the outcome x.
I Continuous: Let X be a continuous random variable and f its density

function.
L(θ|x) = fθ(x).

is called likelihood function of θ given the outcome x.

NB! Note the difference with conditional probabilities.
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Prior and posterior

It is presumed that new data is expected during the process.

Prior Prior probability is the probability of the event (before
collection of a new data).

Posterior Posterior probability of the event is the probability of the
event (after collection of a new data). Easy to memorize: Posterior
probability is proportional to likelihood multiplied by prior probability.

S. Nõmm ( CS TalTech) Data Mining: Lecture 2 07.09.2021 32 / 44



Maximal Likelihood Estimate for MVN

Theorem

If one have N samples xi v N (µ,Σ) then the maximal likelihood estimate
(MLE) for the parameters is given by

µ̂ =
1

N

N∑
i=1

xi , x̄

Σ̂ =
1

N

( N∑
i=1

xix
T
i

)

S. Nõmm ( CS TalTech) Data Mining: Lecture 2 07.09.2021 33 / 44



Gaussian Mixture Model

LVM - latent variable models

Mixture of Gaussians

p(xi|θ) =

K∑
k=1

τkN (xi|µk,Σk).

where τk are the mixing weights, µk are the means and Σk are the
covariance matrices for each base distribution of the mixture.

Applications:
I Black box density model to be used in data compression,outlier

detection etc.
I Clustering. Fit the mixture model and then compute p(zi = k|x, θ) -

The posterior probability that point i belongs to cluster k.
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reminder: Bayes rule

NB! This is short reminder of Bayes theorem.

We will return to Bayesian theory in the next chapter.

Let A and B are two events, whereas P (B) 6= 0. Then

P (A|B) =
P (B|A)P (A)

P (B)

Computational example.
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Mixture models for clustering

The posterior probability that point i belongs to cluster k is referred
as the responsibility of cluster k for point i. According to Bayes rule:

ri,k = p(zi = k|xi, θ) =
p(zi = k|θ)p(xi|zi = k, θ)∑K

k′=1 p(zi = k′|θ)p(xi|zi = k′, θ)

This procedure is referred as soft clustering. NB! In the mixture case
we never observe variables zi.

Link to hard clustering using MAP estimate

z∗i = arg max
k

ri,k = arg max
k

log p(xi|zi = k, θ) + log p(zi = k|θ).
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Presence of latent variables makes complicated to compute ML
estimates. Introduce negative log likelihood function.

NLL(θ) = − 1

N
log p(D|θ).

Let x be the observed variables and zi be the hidden or missing
variables. The goal is to maximize the log likelihood of the observed
data.

`(θ) =

N∑
i=1

log p(xi|θ) =

N∑
i=1

log
[
p(xi, zi|θ)

]
.

Complete data log likelihood could not be computed because zi is
unknown.

`C(θ) =

N∑
i=1

log p(xi, zi|θ).

Expected complete data log likelihood

Q(θ, θt−1) = E[`c(θ)|D, θt−1]

=
∑
i

∑
k

ri,k log τk +
∑
i

∑
k

rr,k log p(xi|θk).
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EM for GMM

E step:

ri,k =
τkp(xi|θ

(t−1)
k )∑

k′ τk′p
(
xi|θ(t−1)k′

)
M step: Optimize Q with respect to the θ and τ .

τk =

∑
i ri,k
N

µk =

∑
i ri,kxi
rk

Σk =

∑
i ri,k(xi − µk)(xi − µk)T

rk
=

Σiri,kxix
T
i

rk
− µkµTk
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Example
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Clustering overview

EM estimates the parameters of mixture.

EM may be referred as parametric method. Model is described by the
parameters of clusters.

How model is described for other clustering techniques?
Representative? Hierarchical? Density-based?

What is clustering model?
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Related topics

Self organizing maps, will be discussed later (together with Neural
Networks).

Outlier analysis.
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Exercises for self practice

Please note this is not a mandatory Home Assignment, nevertheless some
or all of the exercises may be included into Home Assignments.

Exercises

Implement EM algorithm.

Compare performance of your implementation of EM algorithm to the
performance of k-means.

Could you formally verify if given set is gaussian? (question to refresh
yor knowledge of probability and statistics)
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Cluster Purity. NB! Not unsupervised any more!!!

Let mij represent the number of data points from class (ground-truth
cluster) i that are mapped to (algorithm determined) cluster j.

Denote number of data points in true cluster i are by Ni,the number of data
points in algorithm-determined cluster j by Mj .

Ni =

kd∑
j=1

mij ; Mj =

kt∑
i=1

mij ;

For a given algorithm-determined cluster j, the number of data points Pj in
its dominant class is: Pj = max

i
mij .

Purity index is defined

Pa =

kd∑
j=1

Pj

kd∑
j=1

Mj

.
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Gini index

Gini index for algorithm determined cluster j is defined:

Gj = 1−
kt∑
i=1

(
mij

Mj

)2

.

Average Gini index is defined as follows:

G =

kd∑
j=1

GjMj

kd∑
j=1

Mj

.
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