
Model Checking  
 

CTL model checking algorithms 

Many slides from Tevfik Bultan 



Recall: Linear Time vs. Branching Time 

• In linear time logics we look at execution paths individually 

• In branching time logics we view the computation 

alternatives as a tree 

– computation tree unrolls the transition relation 
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Recall: Computation Tree Logic (CTL) 

• In CTL we quantify over the paths in the computation tree 

 

• We use the same temporal operators as in LTL: X, G, F, U 

 

• We attach path quantifiers to these temporal operators: 

– A : for all paths 

– E : there exists a path 

 

• We end up with eight temporal operator pairs: 

– AX, EX, AG, EG, AF, EF, AU, EU 



Examples 

 

EX  (exists next) 

 

AX (all next) 

 

 

 

 

 

EG (exists global) 

 

 

   

     

AG (all global) 

 



Examples (continued) 

 

EF (exists future) 

 

  

AF (all future) 

 

 

 

 

 EU   (exists until) 

 

 

  

 

 AU   (all until) 

 



Automated Verification of Finite State Systems  
[Clarke and Emerson 81], [Queille and Sifakis 82] 

• CTL Model checking problem:  

 Given a transition system T = (S, I, R), and a CTL formula , 

does the transition system T satisfy the property ? 

 

 CTL model checking problem can be solved in  

 

 

Note:  

– the complexity is linear in the size of the transition 

system T 

– the complexity is exponential in the number of variables 

of  and S in the number of concurrent components of T 

  This is called the state space explosion problem. 

O(| |  (|S|+|R|)) 



• Translate the formula to a formula which uses only the basis  
 

       EX ,   EG ,    EU  

 

• Key idea of the CTL model checking algorithms:  

    M,s0 |= p? 
 

– Initially, the states S are labeled with atomic propositions from set AP. 

– Label the states of M with subformulas of p that hold in these states 

(start from the innermost non-atomic subformulas of p).  

– Each (temporal or boolean) operator has to be processed only once. 

– Graph traversal algorithms (DFS or BFS) are used to find the labeling 

for each operator. 
 

• Computation of each sub-formula takes O(|S|+|R|).  

CTL Model Checking Algorithm 



• EX   is easy to do in O(|S|+|R|) 

– All the nodes which have a next state labeled with  should be 

labeled with EX  

 

•  EU : Find the states which are the initial states of a path where  U  

holds 

Equivalently,  

– find the nodes which reach  labeled node by a path where each 

node is labeled with  

– Label such nodes with  EU 

It is a reachability problem which can be solved in O(|S|+|R|) 

 

CTL Model Checking Algorithms: intuition 



CTL Model Checking Algorithms: intuition 

   EG  :  
 

Find paths where each node is labeled with  and label nodes in such 

paths with EG  : 

– First remove all the states which do not satisfy  from the transition 

graph 

– Compute the connected components of the remaining graph and 

then find the nodes which can reach the connected components 

(both of which can be done in O(|S|+|R|) 

– Label the nodes with EG  in the connected components and the 

nodes that can reach the connected components. 



Verification vs. Falsification 

• Verification:  

– Show that initial states  truth set of  

 

• Falsification: 

– Find if a state  (initial states  truth set of ) 

– Generate a counter-example starting from that state 
 

• CTL model checking algorithm can also generate a counter-example 

path (if the property is not satisfied) without increasing the complexity 
 

• The ability to find counter-examples is one of the biggest strengths of 

model checkers 



Problems with the previous algorithm 

 

It is named  explicit state model checking 

 

• All the states and labels associated to the states must be 

recorded when doing states traversal 

– needs a lot of memory 

– causes exponential explosion of required memory 

•  the number of states |S| in the transition graph T is 

exponential in the number of variables and concurrent 

processes in the system modelled with LTS. 

 

LTS – Labeled Transition System 



Inroduction to symbolic state model checking 

 

• How to deal with exponential explosion of the memory 

space for CTL model checking??? 



Characterization of Temporal operators as Fixpoints  
[Emerson & Clarke 80]: Think about temporal op-s as recursive functions on sets 

Here are some interesting CTL equivalences (for a state of computation tree) 

 

AG  =   AX AG  

EG  =   EX EG  

 

AF   =   AX AF  

EF   =   EX EF  

 

 AU  =   (  AX ( AU)) 

 EU  =   (  EX ( EU)) 

 
Note:  

 We “unfold” the property by rewriting the CTL temporal operators using 
op-s themselves and EX and AX operators. 

function 
argument 

value 



Functionals (mapping of an arbitrary set into a set ) 

• Given a transition system T=(S, I, R), we will define functions from sets 

of states to sets of states  

– f : 2S  2S   2S – set of subsets of S 

 

• For example, one such function is the EX operator (which computes the 

“pre-image” of a set of states given a relation R) 

– EX : 2S  2S 

which can be defined as: 

EX( ) = { s | (s, s’)  R and s’   } 
 

Abuse of notation:  

 Generally, [| |] denotes the set of states which satisfy the property , 

i.e., the truth set of . Here we use just  in the same sense. 



Functionals 

• Now, we can think of all temporal operators also as 

functionals from sets of states to sets of states 
 

• For example,  

in logic notation: 

AX  = EX( ) 

or if we use set notation 

AX  = (S - EX(S - ))  

 

Abuse of notation: we will use the set  

and logic notations interchangeably.  

   

Logic   Set 

false    

true  S 

         S –  

            

          

  



Based on the equivalence EF  =   EX EF   

we observe that EF  is a fixpoint of the following function: 

  f y =   EX y, where y = EF  

  i.e., f y = y 

In fact, EF  is the least fixpoint of f, which is written as: 

 

 EF  =  y .   EX y 

 

 

Temporal Properties as Fixpoints (1) 

function 
argument 

Value of the argument 
that is fp 



EF Fixpoint Computation 

•  •  •  

EF()  states from where  is reachable      EX()    EX(EX())   ...  
  

  
EF() 



Temporal Properties as Fixpoints (2) 

Based on the equivalence EG  =   EX EG  

we observe that EG  is a fixpoint of the following function: 

  f y =   EX y, 

 i.e., f (EG ) = EG  

In fact, EG  is the greatest fixpoint of f, which is written as: 

 

 EG  =  y .   EX y 

 function 
argument 

Value of argument 
that is FP 



EG Fixpoint Computation 

•  •  • EG() 

  

EG()  “states that can avoid reaching  ”     EX()  EX(EX())  ... 



-Calculus 

-Calculus is a temporal logic which consist of : 

• Atomic properties AP 

• Boolean connectives:  ,  ,   
• Pre-image operator: EX 

• Least and greatest fixpoint operators:  y. F y and  y. F y  

 

Any CTL* formula can be expressed in -calculus  

 

 



Symbolic Model Checking 
[McMillan et al. LICS 90]  

• Represent sets of states S and the transition relation R as 

Boolean logic formulas 

 

• Fixpoint computation becomes formula manipulation, i.e. 

– pre-condition (EX) computation:  
including existentially bound variable elimination 

– conjunction (intersection), disjunction (union) and 

negation (set difference), and equivalence check 

 

• Use an efficient data structure for boolean logic formulas  

– Binary Decision Diagrams (BDDs) 



Example: Mutual Exclusion Protocol 

Process 1: 

while (true) { 

   out:  a := true; turn := true; 

   wait: await (b = false or turn = false); 

   cs:   a := false; 

} 

|| 

Process 2: 

while (true) { 

   out:  b := true; turn := false; 

   wait: await (a = false or turn); 

   cs:   b := false; 

} 

Two concurrently executing processes are trying to enter their 

critical section without violating mutual exclusion condition 



Encoding State Space S 

• Encode the state space using only boolean variables 

 

• Two program counter variables: pc1, pc2 

with domains {out, wait, cs}  

– We need two boolean variables per program counter to 
encode their 3 values: 

pc10, pc11, pc20, pc21  . 

– Encoding:  

 pc10  pc11    pc1 = out 

 pc10  pc11     pc1 = wait 

    pc10  pc11     pc1 = cs 

  

• The other three variables are already booleans: turn, a , b 



Encoding State Space S 

• Each state can be written as a tuple: 

  (pc10, pc11, pc20, pc21, turn, a, b) 

– After encoding:   

(o,o,F,F,F)becomes (F,F,F,F,F,F,F)  

(o,c,F,T,F)becomes (F,F,T,T,F,T,F)  

 

• We can use boolean logic formulas on the variables 

pc10,pc11,pc20,pc21,turn,a,b to represent sets of states: 

{(F,F,F,F,F,F,F)}  pc10   pc11  pc20   pc21   turn  a  b 

{(F,F,T,T,F,F,T)}  pc10   pc11  pc20  pc21   turn  a  b 

 

{(F,F,F,F,F,F,F), (F,F,T,T,F,F,T)}  pc10   pc11  pc20   pc21   

turn  a  b  pc10   pc11  pc20  pc21   turn  a  b 

 pc10   pc11   turn  b  (pc20  pc21  b) 



Encoding Initial States 

• We can write the initial states as a boolean logic formula 

– recall that, initially: pc1=o and pc2=o but other 

variables may have any value in their domain 

 

I  {(o,o,F,F,F), (o,o,F,F,T), (o,o,F,T,F), 

(o,o,F,T,T), (o,o,T,F,F), (o,o,T,F,T), 

(o,o,T,T,F), (o,o,T,T,T)}  

 pc10   pc11  pc20   pc21  

 

 meaning that 

  pc1 and pc2 are set to false and other variables may have 

arbitrary boolean values 



Encoding the Transition Relation 

• We can use boolean logic formulas and primed variables to 

encode the transition relation R. 

• We will use two sets of variables: 

– Current state variables: pc10,pc11,pc20,pc21,turn,a,b 

– Next state variables: pc10’,pc11’,pc20’,pc21’,turn’,a’,b’ 

 

• For example, we can write a boolean logic formula for the 
statement of process 1: 

cs:   a := false;  

as follows 

pc10  pc11  pc10’  pc11’  a’  

(pc20’pc20) (pc21’pc21)(turn’turn)(b’b) 

– Call this formula R1c 



Encoding the Transition Relation 

• Similarly we can write a formula Rij for each statement in 

the program 

 

• Then the overall transition relation is 

R  R1o  R1w  R1c  R2o  R2w  R2c 

 

 

 

But how to interprete temporal operators of p on symbolic 

representation of M?? 

 

 

 



Symbolic Pre-condition Computation 

• Recall the pre-image function 

EX : 2S  2S 

which is defined as: 

EX() = { s | (s,s’)  R and s’  [| |]} 

• We can symbolically compute pre as follows 

EX()  V’ (R   [V’ / V]) 

– V : values of boolean variables in the current-state  

– V’ : values of boolean variables in the next-state  

–  [V’ / V] : rename variables in  by replacing current-state variables 

with the corresponding next-state variables 

– V’ f: existentially quantify out all the variables in V’ from f  



Renaming 

• Assume that we have two variables x, y.  

• Then, V = {x, y} and V’={x’, y’} 

 

• Renaming example: 

     Given   x  y : 

[V’ / V]    x  y [V’ / V]    x’  y’ 

 

 



Existential Quantifier Elimination 

• Given a boolean formula f and a single variable v 

v f  f [true/v]  f [false/v] 

i.e., to existentially quantify out a variable, first set it to true then set it 
to false and then take the disjunction of the two results. 

 

• Example:  f   x  y  x’  y’  

 V’ f    x’ ( y’ (x  y  x’  y’) ) 

 x’ ((x  y  x’  y’ )[true/y’]  (x  y  x’  y’ )[false/y’]) 

 x’ (x  y  x’  true  x  y  x’  false ) 

 x’( x  y  x’ ) 

 (x  y  x’)[true/x’]  (x  y  x’)[false/x’])  

 x  y  true  x  y  false 

 x  y  



An Extremely Simple Example 

Variables: x, y: boolean 

 

Set of states: 

S = {(F,F), (F,T), (T,F), (T,T)} 

S  true 

 

Initial condition: 

I   x   y 

 

Transition relation (negates one variable at a time): 

R  x’=x  y’=y  x’=x  y’=y    (= means ) 

 

 

F,T 

F,F 

T,T 

T,F 



An Extremely Simple Example 

Given    x  y, compute EX() 

 

EX()  V’ R  [V’ / V] 

 V’ R  x’  y’ 

 V’ (x’=x  y’=y  x’=x  y’=y )  x’  y’ 

 V’ (x’=x  y’=y)  x’  y’  (x’=x  y’=y)  x’  y’ 

 V’ x  y  x’  y’  x  y  x’  y’ 

 x  y  x  y 

 

EX(x  y)  x  y  x  y 

In other words EX({(T,T)})  {(F,T), (T,F)} 

 

F,T 

F,F 

T,T 

T,F 

| by distr 

| by   

| by substit  

| by  -elimination  



An Extremely Simple Example 

 

Let’s compute EF(x  y) 

 

 

The fixpoint sequence is 

False,   xy ,   xy  EX(xy) ,   xy  EX (xy  EX(xy) ) , ... 

If we do the EX computations, we get: 

False,     x  y ,     x  y  x  y  x  y,       True 

 

 

EF(x  y)  True 

In other words EF({(T,T)})  {(F,F),(F,T), (T,F),(T,T)} 

 

F,T 

F,F 

T,T 

T,F 

0 1 2 3 

1 

2 

3 



An Extremely Simple Example 

• Based on our results, for extremely simple transition system 

T = (S, I, R) we have 

If 

I  EF(x  y)  ( corresponds to implication) hence:  

T |= EF(x  y)  

(i.e., there exists a path from each initial state where 

eventually x and y both become true in the same state) 

If 

I  EX(x  y)  hence: 

T |= EX(x  y)  

(i.e., there does not exist a path from each initial state where 

in the next state x and y both become true) 

 



An Extremely Simple Example 

• Let’s try one more property AF(x  y) 

 

• To check this property we first convert it to a formula which 

uses only the temporal operators in our basis: 

  AF(x  y)   EG((x  y)) 

i.e., 

 if we can find an initial state which satisfies EG((x  y)), 

then we know that the transition system T does not satisfy 

the property AF(x  y) 

 



An Extremely Simple Example 

Let’s compute EG((x  y)) 

 

 

The fixpoint sequence is: 

True,     x  y,     (x  y)  EX(x  y) , …  

 

If we do the EX computations, we get: 

True,     x  y,      x  y,  

 

 

EG((x  y))  x  y 

Since I  EG((x  y))   we conclude that T |= AF(x  y)  

 

F,T 

F,F 

T,T 

T,F 

0 1 2 

0 

1 



Symbolic CTL Model Checking Algorithm (in general) 

• Translate the formula to a formula which uses the basis  

– EX , EG ,  EU 

 

• Atomic formulas can be interpreted directly on the state representation 

 

• For EX  compute the pre-image using existential variable elimination 

as we discussed 

 

• For EG and EU compute the fixpoints iteratively 



Symbolic Model Checking Algorithm 

Check(f : CTL formula) : boolean logic formula 

(here we use logic encoding of sets of states) 

 case: f  AP  return f; 

 case: f      return Check(); 

 case: f      return Check()  Check(); 

 case: f      return Check()  Check(); 

 case: f  EX   return V’R  Check()[V’/V];

  

  



Symbolic Model Checking Algorithm 

Check(f)  

   … 

 case: f  EG    

  Y := True;  

  P := Check(); 

  Y’ := P  Check(EX(Y)); 

  while (Y  Y’)  

  {  

   Y  := Y’;  

   Y’ := P  Check(EX(Y));  

  } 

  return Y; 

 



Symbolic Model Checking Algorithm 

Check(f)  

   … 

 case: f   EU   

  Y := False;  

  P := Check();  

  Q := Check(); 

  Y’ := Q  [P  Check(EX(Y))]; 

  while (Y  Y’)  

  {  

   Y := Y’;  

   Y’:= Q  [P  Check(EX(Y))]; 

  } 

  return Y; 



Binary Decision Diagrams (BDDs) 

• Binary Decision Diagrams (BDDs) 

– An efficient data structure for boolean formula manipulation. 

– There are BDD packages available, e.g. CUDD from Colorado 

University http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html 
 

• BDD data structure can be used to implement the symbolic model 

checking algorithms discussed above. 
 

• BDDs are  canonical representation for boolean logic formulas, i.e. 

– given formulas F and G, they are F  G  if their BDD 

representations will be identical. 



Binary Decision Trees (BDT) 

Fix a variable order, in each level of the tree branch one value 

of the variable in that level. 

 

• Examples of BDT-s for boolean formulas on two variables: 

Variable order: x, y  
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Transforming BDT to  BDD 

• Repeatedly apply the following transformations to a BDT: 

– Remove duplicate terminals &  

 redraw connections to remaining terminals that have same name as 

deleted ones 

– Remove duplicate non-terminals & ... 

– Remove redundant tests 

 

• These transformations transform the tree to a directed acyclic graph – 

binary decision diagram (BDD). 

 



Binary Decision Trees vs. BDDs 
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Good News About BDDs 

• Given BDDs for two boolean logic formulas F and G, 

 

– the BDDs for F  G  and F  G are of size |F|  |G| (and 

can be computed in that time) 

 

– the BDD for F is of size |F| (and can be computed in 

that time) 

 

– Equivalence F ? G can be checked in constant time 

 

– Satisfiability of F can be checked in constant time 

• But, this does not mean that one can solve SAT in 

constant time (it is NP-complete problem). 

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete


Bad News About BDDs 

• The size of a BDD can be exponential in the number of boolean 
variables 

 

• The sizes of the BDDs are very sensitive to the ordering of variables. 
Bad variable ordering can cause exponential increase in the size of the 
BDD 

 

• There are functions which have BDDs that are exponential for any 
variable ordering (for example binary multiplication) 

  

• Pre-condition computation requires existential variable elimination 

– Existential variable elimination can cause an exponential blow-up in 
the size of the BDD 



BDDs are Sensitive to Variable Ordering 

Identity relation for two variables: (x’  x)  (y'  y) 
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What About LTL and CTL* Model Checking? 

• The complexity of the model checking problem for LTL and 

CTL*  is:  

– (|S|+|R|)  2O(|f|)  

where | f | is the number of logic connectives in f 

• Typically the size of the formula is much smaller than the 

size of the transition system  

– So the exponential complexity in the size of the formula 

is not very significant in practice 

 

• LTL properties are intuitive and easy to write correctly 

– XF   and FX   are equivalent in LTL 

– AXAF   and AFAX  are not equivalent in CTL 


