Model Checking

CTL model checking algorithms

Many slides from Tevfik Bultan

Recall: Linear Time vs. Branching Time

- In linear time logics we look at execution paths individually
- In branching time logics we view the computation alternatives as a tree
- computation tree unrolls the transition relation

Transition System

Execution Paths

Computation Tree

Recall: Computation Tree Logic (CTL)

- In CTL we quantify over the paths in the computation tree
- We use the same temporal operators as in LTL: X, G, F, U
- We attach path quantifiers to these temporal operators:
- A : for all paths
- E : there exists a path
- We end up with eight temporal operator pairs:
- AX, EX, AG, EG, AF, EF, AU, EU

Examples

$\mathrm{AX} \varphi$ (all next)

EG φ (exists global)
EX φ (exists next)

- •

AG φ (all global)

Examples (continued)

$\mathbf{E F} \varphi$ (exists future)

$\varphi \mathbf{E} \mathbf{U} \psi$ (exists until)

AF φ (all future)

$\varphi \mathrm{AU} \psi$ (all until)

Automated Verification of Finite State Systems

[Clarke and Emerson 81], [Queille and Sifakis 82]

- CTL Model checking problem:

Given a transition system $T=(S, I, R)$, and a CTL formula φ, does the transition system T satisfy the property φ ?

CTL model checking problem can be solved in

$$
\mathrm{O}(|\varphi| \times(|S|+|R|))
$$

Note:

- the complexity is linear in the size of the transition system T
- the complexity is exponential in the number of variables of φ and S in the number of concurrent components of T \rightarrow This is called the state space explosion problem.

CTL Model Checking Algorithm

- Translate the formula to a formula which uses only the basis

$$
\mathrm{EX} \varphi, \mathrm{EG} \varphi, \quad \varphi \mathrm{EU} \psi
$$

- Key idea of the CTL model checking algorithms:

$$
M, s_{0} \mid=p ?
$$

- Initially, the states S are labeled with atomic propositions from set $A P$.
- Label the states of M with subformulas of p that hold in these states (start from the innermost non-atomic subformulas of p).
- Each (temporal or boolean) operator has to be processed only once.
- Graph traversal algorithms (DFS or BFS) are used to find the labeling for each operator.
- Computation of each sub-formula takes $\mathrm{O}(|S|+|R|)$.

CTL Model Checking Algorithms: intuition

- $\operatorname{EX} \varphi$ is easy to do in $\mathrm{O}(|S|+|R|)$
- All the nodes which have a next state labeled with φ should be labeled with EX φ
- $\varphi \mathrm{EU} \psi$: Find the states which are the initial states of a path where $\varphi \cup \psi$ holds
Equivalently,
- find the nodes which reach ψ labeled node by a path where each node is labeled with φ
- Label such nodes with φ EU ψ

It is a reachability problem which can be solved in $\mathrm{O}(|S|+|R|)$

CTL Model Checking Algorithms: intuition

EG φ :
Find paths where each node is labeled with φ and label nodes in such paths with EG φ :

- First remove all the states which do not satisfy φ from the transition graph
- Compute the connected components of the remaining graph and then find the nodes which can reach the connected components (both of which can be done in $\mathrm{O}(|\mathrm{S}|+|\mathrm{R}|)$
- Label the nodes with EG φ in the connected components and the nodes that can reach the connected components.

Verification vs. Falsification

- Verification:
- Show that initial states \subseteq truth set of φ
- Falsification:
- Find if a state \in (initial states \cap truth set of $\neg \varphi$)
- Generate a counter-example starting from that state
- CTL model checking algorithm can also generate a counter-example path (if the property is not satisfied) without increasing the complexity
- The ability to find counter-examples is one of the biggest strengths of model checkers

Problems with the previous algorithm

It is named explicit state model checking

- All the states and labels associated to the states must be recorded when doing states traversal
- needs a lot of memory
- causes exponential explosion of required memory
- the number of states $|S|$ in the transition graph T is exponential in the number of variables and concurrent processes in the system modelled with LTS.

LTS - Labeled Transition System

Inroduction to symbolic state model checking

- How to deal with exponential explosion of the memory space for CTL model checking???

Characterization of Temporal operators as Fixpoints: $: \vdots:$:

 [Emerson \& Clarke 80]: Think about temporal op-s as recursive functions on sets $\because: 8:$Here are some interesting CTL equivalences (for a state of computation tree) value function
$A G \varphi=\varphi \wedge A X A G \varphi$ argument
$\mathrm{EG} \varphi=\varphi \wedge \mathrm{EXEG}$
$\begin{aligned} \mathrm{AF} \varphi & =\varphi \vee \mathrm{AXAF} \\ \mathrm{EF} \varphi & =\varphi \vee \mathrm{EXEF}\end{aligned}$
\mathscr{Q}
$\varphi E \cup \psi=\psi \vee(\varphi \wedge E X(\varphi E U \psi)$

Note:
We "unfold" the property by rewriting the CTL temporal operators using op-s themselves and EX and AX operators.

Functionals (mapping of an arbitrary set into a set)

- Given a transition system $T=(S, I, R)$, we will define functions from sets of states to sets of states
$-f: 2^{S} \rightarrow 2^{S} \quad 2^{S}-$ set of subsets of S
- For example, one such function is the EX operator (which computes the "pre-image" of a set of states given a relation R)
- EX: $2^{s} \rightarrow 2^{s}$
which can be defined as:
$\operatorname{EX}(\varphi)=\left\{s \mid\left(s, s^{\prime}\right) \in R\right.$ and $\left.s^{\prime} \in \varphi\right\}$
Abuse of notation:
Generally, [| φ /] denotes the set of states which satisfy the property φ, i.e., the truth set of φ. Here we use just φ in the same sense.

Functionals

- Now, we can think of all temporal operators also as functionals from sets of states to sets of states
- For example, in logic notation:

$$
\operatorname{AX} \varphi=\neg \operatorname{EX}(\neg \varphi)
$$

or if we use set notation

$$
\operatorname{AX} \varphi=(S-\operatorname{EX}(S-\varphi))
$$

Abuse of notation: we will use the set and logic notations interchangeably.

Logic	$\underline{\text { Set }}$
false	\varnothing
true	S
$\neg \varphi$	$S-\varphi$
$\varphi \wedge \psi$	$\varphi \cap \psi$
$\varphi \vee \psi$	$\varphi \cup \psi$

Temporal Properties as Fixpoints (1)

Based on the equivalence $\mathrm{EF} \varphi=\varphi \vee \mathrm{EXEF} \varphi$ we observe that $E F \varphi$ is a fixpoint of the following function:

$$
\begin{aligned}
& f y=\varphi \vee E X y, \quad \text { where } \mathrm{y}=\mathrm{EF} \varphi \\
& \text { i.e., } f y=\mathrm{y}
\end{aligned}
$$

In fact, EF φ is the least fixpoint of f, which is written as:

Value of the argument that is fp

EF Fixpoint Computation

$\operatorname{EF}(\varphi) \equiv$ states from where φ is reachable $\equiv \varphi \cup \operatorname{EX}(\varphi) \cup \operatorname{EX}(\operatorname{EX}(\varphi)) \cup \ldots$

Temporal Properties as Fixpoints (2)

Based on the equivalence EG $\varphi=\varphi \wedge \mathrm{EX} \mathrm{EG} \varphi$ we observe that $\mathrm{EG} \varphi$ is a fixpoint of the following function:

$$
\begin{aligned}
& f y=\varphi \wedge E X y, \\
& \text { i.e., } f(E G \varphi)=E G \varphi
\end{aligned}
$$

In fact, $\mathrm{EG} \varphi$ is the greatest fixpoint of f, which is written as:

Value of argument that is $F P$

EG Fixpoint Computation

$\mathrm{EG}(\varphi) \equiv$ "states that can avoid reaching $\neg \varphi " \equiv \varphi \cap \operatorname{EX}(\varphi) \cap \operatorname{EX}(\mathrm{EX}(\varphi)) \cap \ldots$

μ-Calculus

μ-Calculus is a temporal logic which consist of :

- Atomic properties AP
- Boolean connectives: \neg, \wedge, \vee
- Pre-image operator: EX
- Least and greatest fixpoint operators: $\mu \mathrm{y}$. F y and v y. F y

Any CTL* formula can be expressed in μ-calculus

Symbolic Model Checking

- Represent sets of states S and the transition relation R as Boolean logic formulas
- Fixpoint computation becomes formula manipulation, i.e.
- pre-condition (EX) computation:
including existentially bound variable elimination
- conjunction (intersection), disjunction (union) and negation (set difference), and equivalence check
- Use an efficient data structure for boolean logic formulas
- Binary Decision Diagrams (BDDs)

Example: Mutual Exclusion Protocol

Two concurrently executing processes are trying to enter their critical section without violating mutual exclusion condition

```
Process 1:
while (true) {
    out: a := true; turn := true;
    wait: await (b = false or turn = false);
    cs: a := false;
}
|
Process 2:
while (true) {
    out: b := true; turn := false;
    wait: await (a = false or turn);
    cs: b := false;
}
```


Encoding State Space S

- Encode the state space using only boolean variables
- Two program counter variables: pc1, pc2 with domains \{out, wait, cs\}
- We need two boolean variables per program counter to encode their 3 values:

$$
\mathrm{pc}_{0}, \mathrm{pc}_{1}, \mathrm{pc}_{2}, \mathrm{pc}_{1}
$$

- Encoding:

$$
\begin{array}{cll}
\neg \mathrm{pc} 1_{0} \wedge \neg \mathrm{pc} 1_{1} & \equiv & \mathrm{pc} 1=\text { out } \\
\neg \mathrm{pc} 1_{0} \wedge \mathrm{pc} 1_{1} & \equiv & \mathrm{pc} 1=\text { wait } \\
\mathrm{pc} 1_{0} \wedge \mathrm{pc} 1_{1} & \equiv & \mathrm{pc} 1=\mathrm{cs}
\end{array}
$$

- The other three variables are already booleans: turn, a, b

Encoding State Space S

- Each state can be written as a tuple:
($\mathrm{pc} 1_{0}, \mathrm{pc} 1_{1}, \mathrm{pc} 2_{0}, \mathrm{pc} 2_{1}$, turn, a, b)
- After encoding:
(O, \underline{O}, F, F, F) becomes (F,F,F,F,F,F,F)
($\mathrm{O}, \mathrm{C}, \mathrm{F}, \mathrm{T}, \mathrm{F}$) becomes ($\mathrm{F}, \mathrm{F}, \mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{T}, \mathrm{F}$)
- We can use boolean logic formulas on the variables $\mathrm{pc} 1_{0}, \mathrm{pc} 1_{1}, \mathrm{pc}_{0}, \mathrm{pc} 2_{1}$, turn, a, b to represent sets of states:

$$
\{(\mathrm{F}, \mathrm{~F}, \mathrm{~F}, \mathrm{~F}, \mathrm{~F}, \mathrm{~F}, \mathrm{~F})\} \equiv \neg \mathrm{pc} 1_{0} \wedge \neg \mathrm{pc} 1_{1} \wedge \neg \mathrm{pc} 2_{0} \wedge \neg \mathrm{pc} 2_{1} \wedge \neg \text { turn } \wedge \neg \mathrm{a} \wedge \neg \mathrm{~b}
$$

$$
\{(\mathrm{F}, \mathrm{~F}, \mathrm{~T}, \mathrm{~T}, \mathrm{~F}, \mathrm{~F}, \mathrm{~T})\} \equiv \neg \mathrm{pc} 1_{0} \wedge \neg \mathrm{pc} 1_{1} \wedge \mathrm{pc} 2_{0} \wedge \mathrm{pc} 2_{1} \wedge \neg \text { turn } \wedge \neg \mathrm{a} \wedge \mathrm{~b}
$$

$$
\{(\mathrm{F}, \mathrm{~F}, \mathrm{~F}, \mathrm{~F}, \mathrm{~F}, \mathrm{~F}, \mathrm{~F}),(\mathrm{F}, \mathrm{~F}, \mathrm{~T}, \mathrm{~T}, \mathrm{~F}, \mathrm{~F}, \mathrm{~T})\} \equiv \neg \mathrm{pc} 1_{0} \wedge \neg \mathrm{pc}_{1} \wedge \neg \mathrm{pc} 2_{0} \wedge \neg \mathrm{pc} 2_{1} \wedge \neg
$$

$$
\text { turn } \wedge \neg \mathrm{a} \wedge \neg \mathrm{~b} \vee \neg \mathrm{pc} 1_{0} \wedge \neg \mathrm{pc}_{1} \wedge \mathrm{pc} 2_{0} \wedge \mathrm{pc} 2_{1} \wedge \neg \text { turn } \wedge \neg \mathrm{a} \wedge \mathrm{~b}
$$

$$
\equiv \neg \mathrm{pc} 1_{0} \wedge \neg \mathrm{pc} 1_{1} \wedge \neg \operatorname{turn} \wedge \neg \mathrm{~b} \wedge\left(\mathrm{pc} 2_{0} \wedge \mathrm{pc} 2_{1} \leftrightarrow \mathrm{~b}\right)
$$

Encoding Initial States

- We can write the initial states as a boolean logic formula
- recall that, initially: pc1=0 and pc2=o but other variables may have any value in their domain

$$
\begin{aligned}
I \equiv & \{(O, O, F, F, F), \quad(O, O, F, F, T), \quad(O, O, F, T, F), \\
& (O, O, F, T, T), \quad(O, O, T, F, F), \quad(O, O, T, F, T), \\
& (O, O, T, T, F), \quad(O, O, T, T, T)\} \\
\equiv & \neg \mathrm{pc}_{0} \wedge \neg \mathrm{pc}_{1} \wedge \neg \mathrm{pc}_{0} \wedge \neg \mathrm{pc}_{1}
\end{aligned}
$$

meaning that
pc 1 and pc 2 are set to false and other variables may have arbitrary boolean values

Encoding the Transition Relation

- We can use boolean logic formulas and primed variables to encode the transition relation R.
- We will use two sets of variables:
- Current state variables: $\mathrm{pc} 1_{0}, \mathrm{pc}_{1}, \mathrm{pc} 2_{0}, \mathrm{pc} 2_{1}$, turn, a, b
- Next state variables: $\mathrm{pc}_{\mathrm{o}}{ }^{\prime}, \mathrm{pc} 1_{1}{ }^{\prime}, \mathrm{pc} 2^{\prime}{ }^{\prime}, \mathrm{pc} 2^{1}{ }^{\prime}$,turn', ${ }^{\prime}$ ', ${ }^{\prime}{ }^{\prime}$
- For example, we can write a boolean logic formula for the statement of process 1 :
cs: a := false;
as follows

$$
\begin{aligned}
& \mathrm{pc} 1_{0} \wedge \mathrm{pc} 1_{1} \wedge \neg \mathrm{pc} 1_{0}^{\prime} \wedge \neg \mathrm{pc} 1_{1}^{\prime} \wedge \neg \mathrm{a}^{\prime} \wedge \\
& \left(\mathrm{pc} 2_{0}^{\prime} \leftrightarrow \mathrm{pc} 2_{0}\right) \wedge\left(\mathrm{pc} 2_{1}^{\prime} \leftrightarrow \mathrm{pc} 2_{1}\right) \wedge(\text { turn } \leftrightarrow \leftrightarrow \text { turn }) \wedge\left(\mathrm{b}^{\prime} \leftrightarrow \mathrm{b}\right)
\end{aligned}
$$

- Call this formula $\mathrm{R}_{1 \mathrm{c}}$

Encoding the Transition Relation

- Similarly we can write a formula R_{ij} for each statement in the program
- Then the overall transition relation is

$$
R \equiv R_{10} \vee R_{1 w} \vee R_{1 c} \vee R_{20} \vee R_{2 w} \vee R_{2 c}
$$

But how to interprete temporal operators of p on symbolic representation of M ??

Symbolic Pre-condition Computation

- Recall the pre-image function

EX : $2^{s} \rightarrow 2^{s}$
which is defined as:

$$
E X(\varphi)=\left\{s \mid\left(s, s^{\prime}\right) \in R \text { and } s^{\prime} \in[|\varphi|]\right\}
$$

- We can symbolically compute pre as follows

$$
\operatorname{EX}(\varphi) \equiv \exists V(R \wedge \varphi[V / V])
$$

- V : values of boolean variables in the current-state
- V : values of boolean variables in the next-state
$-\varphi[V / V]$: rename variables in φ by replacing current-state variables with the corresponding next-state variables
$-\exists V$ f. existentially quantify out all the variables in V from f

Renaming

- Assume that we have two variables x, y.
- Then, $V=\{\mathrm{x}, \mathrm{y}\}$ and $V=\left\{\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right\}$
- Renaming example:

Given $\varphi \equiv \mathrm{x} \wedge \mathrm{y}$:
$\varphi[V / V] \equiv x \wedge y[V / V] \equiv x^{\prime} \wedge y^{\prime}$

Existential Quantifier Elimination

- Given a boolean formula f and a single variable v
$\exists v f \equiv f[t r u e / v] \vee f[f a / s e / v]$
i.e., to existentially quantify out a variable, first set it to true then set it to false and then take the disjunction of the two results.
- Example: $f \equiv \neg \mathrm{x} \wedge \mathrm{y} \wedge \mathrm{x}^{\prime} \wedge \mathrm{y}^{\prime}$
$\exists V^{\prime} f \equiv \exists x^{\prime}\left(\exists y^{\prime}\left(\neg x \wedge y \wedge x^{\prime} \wedge y^{\prime}\right)\right)$
$\equiv \exists x^{\prime}\left(\left(\neg x \wedge y \wedge x^{\prime} \wedge y^{\prime}\right)\left[\right.\right.$ true $\left.\left./ y^{\prime}\right] \vee\left(\neg x \wedge y \wedge x^{\prime} \wedge y^{\prime}\right)\left[f a l s e / y^{\prime}\right]\right)$
$\equiv \exists x^{\prime}\left(\neg x \wedge y \wedge x^{\prime} \wedge\right.$ true $\vee \neg x \wedge y \wedge x^{\prime} \wedge$ false $)$
$\equiv \exists x^{\prime}\left(\neg x \wedge y \wedge x^{\prime}\right)$
$\equiv\left(\neg x \wedge y \wedge x^{\prime}\right)\left[\right.$ true $\left.\left./ x^{\prime}\right] \vee\left(\neg x \wedge y \wedge x^{\prime}\right)\left[f a l s e / x^{\prime}\right]\right)$
$\equiv \neg x \wedge y \wedge$ true $\vee \neg x \wedge y \wedge$ false
$\equiv \neg \mathrm{X} \wedge \mathrm{y}$

An Extremely Simple Example

Variables: x, y : boolean
Set of states:
$S=\{(\mathrm{F}, \mathrm{F}),(\mathrm{F}, \mathrm{T}),(\mathrm{T}, \mathrm{F}),(\mathrm{T}, \mathrm{T})\}$
$S \equiv$ true

Initial condition:
$I \equiv \neg \mathrm{x} \wedge \neg \mathrm{y}$
Transition relation (negates one variable at a time): $R \equiv \mathrm{x}^{\prime}=\neg \mathrm{x} \wedge \mathrm{y}^{\prime}=\mathrm{y} \vee \mathrm{x}^{\prime}=\mathrm{x} \wedge \mathrm{y}^{\prime}=\neg \mathrm{y}$
(= means \leftrightarrow)

An Extremely Simple Example

Given $\varphi \equiv \mathrm{x} \wedge \mathrm{y}$, compute $\operatorname{EX}(\varphi)$
$\mathrm{EX}(\varphi) \equiv \exists \mathrm{V}^{\prime} \mathrm{R} \wedge \varphi \mathrm{V}^{\prime} / \mathrm{VI}$
| by substit

$\equiv \exists V\left(R \wedge \wedge x^{\prime} \wedge y^{\prime}\right.$
$\equiv \exists V^{\prime}\left(x^{\prime}=-x^{\prime} \wedge y^{\prime}=y \vee x^{\prime}=x \wedge y^{\prime}=-y\right) \wedge x^{\prime} \wedge y^{\prime}$
| by distr
$\equiv \exists V^{\prime}\left(x^{\prime}=\neg x \wedge y^{\prime}=y\right) \wedge x^{\prime} \wedge y^{\prime} \vee\left(x^{\prime}=x \wedge y^{\prime}=\neg y\right) \wedge x^{\prime} \wedge y^{\prime}$
$\equiv \exists V^{\prime} \neg x \wedge y \wedge x^{\prime} \wedge y^{\prime} \vee x \wedge \neg y \wedge x^{\prime} \wedge y^{\prime}$
| by \exists-elimination
$\equiv \neg \mathrm{x} \wedge \mathrm{y} \vee \mathrm{x} \wedge \neg \mathrm{y}$
$E X(x \wedge y) \equiv \neg x \wedge y \vee x \wedge \neg y$ In other words $\operatorname{EX}(\{(T, T)\}) \equiv\{(F, T),(T, F)\}$

An Extremely Simple Example

Let's compute $E F(x \wedge y)$

The fixpoint sequence is
False, $x \wedge y, x \wedge y \vee E X(x \wedge y), x \wedge y \vee E X(x \wedge y \vee E X(x \wedge y)), \ldots$ If we do the EX computations, we get:
$\underbrace{\text { False }}_{0}, \underbrace{x \wedge y}_{1}, \quad \underbrace{x \wedge y \vee \neg x \wedge y \vee x \wedge \neg y}_{2}, \underbrace{\text { True }}_{3}$
$E F(x \wedge y) \equiv$ True
In other words $\operatorname{EF}(\{(\mathrm{T}, \mathrm{T})\}) \equiv\{(\mathrm{F}, \mathrm{F}),(\mathrm{F}, \mathrm{T}),(\mathrm{T}, \mathrm{F}),(\mathrm{T}, \mathrm{T})\}$

An Extremely Simple Example

- Based on our results, for extremely simple transition system $T=(S, I, R)$ we have
$I \subseteq E F(x \wedge y)(\subseteq$ corresponds to implication) hence:
$T \mid=\operatorname{EF}(\mathrm{x} \wedge \mathrm{y})$
(i.e., there exists a path from each initial state where eventually x and y both become true in the same state)
If
$1 \not \subset E X(x \wedge y)$ hence:
$T \nmid=E X(x \wedge y)$
(i.e., there does not exist a path from each initial state where in the next state x and y both become true)

An Extremely Simple Example

- Let's try one more property $\mathrm{AF}(\mathrm{x} \wedge \mathrm{y})$
- To check this property we first convert it to a formula which uses only the temporal operators in our basis:
$A F(x \wedge y) \equiv \neg E G(\neg(x \wedge y))$
i.e.,
if we can find an initial state which satisfies $E G(\neg(x \wedge y))$, then we know that the transition system T does not satisfy the property $\operatorname{AF}(x \wedge y)$

An Extremely Simple Example

Let's compute $\mathrm{EG}(\neg(\mathrm{x} \wedge \mathrm{y}))$

The fixpoint sequence is:
True, $\quad \neg x \vee \neg y, \quad(\neg x \vee \neg y) \wedge E X(\neg x \vee \neg y), \ldots$

If we do the EX computations, we get:
$\underbrace{\text { True, }}_{0} \underbrace{\neg \mathrm{x} \vee \neg \mathrm{y}}_{1}, \underbrace{\neg \mathrm{x} \vee \neg \mathrm{y}}_{2}$,
$E G(\neg(x \wedge y)) \equiv \neg x \vee \neg y$
Since $I \cap \mathrm{EG}(\neg(\mathrm{x} \wedge \mathrm{y})) \neq \varnothing$ we conclude that $T \mid \neq \mathrm{AF}(\mathrm{x} \wedge \mathrm{y})$

Symbolic CTL Model Checking Algorithm (in general)

- Translate the formula to a formula which uses the basis
- EX φ, $\mathrm{EG} \varphi, \varphi \mathrm{EU} \psi$
- Atomic formulas can be interpreted directly on the state representation
- For EX φ compute the pre-image using existential variable elimination as we discussed
- For EG and EU compute the fixpoints iteratively

Symbolic Model Checking Algorithm

Check(f : CTL formula) : boolean logic formula (here we use logic encoding of sets of states)

```
case: f \in AP
case: f}\equiv\\neg
case: f}\equiv\varphi\wedge
case: f}\equiv\varphi\vee
case: f}\equiv\textrm{EX}
```

return $f ;$
return $\neg \operatorname{Check}(\varphi)$;
return Check $(\varphi) \wedge \operatorname{Check}(\psi) ;$
return Check $(\varphi) \vee \operatorname{Check}(\psi) ;$
return $\exists V^{\prime} R \wedge \operatorname{Check}(\varphi)\left[V^{\prime} / V\right] ;$

Symbolic Model Checking Algorithm

Check(f)

```
case: f \equivEG \varphi
    Y := True;
    P := Check(\varphi);
    Y' := P ^ Check(EX(Y));
while (Y # Y')
{
    Y := Y';
    Y' := P ^ Check(EX(Y));
}
return Y;
```


Symbolic Model Checking Algorithm

Check(f)

```
case: \(\mathbf{f} \equiv \varphi \mathrm{EU} \psi\)
    Y := False;
    P := \(\operatorname{Check}(\varphi)\);
    \(\mathrm{Q}:=\operatorname{Check}(\psi) ;\)
\(Y^{\prime}:=Q \vee[P \wedge \operatorname{Check}(E X(Y))] ;\)
while ( \(\mathrm{Y} \neq \mathrm{Y}^{\prime}\) )
\(\{\)
    \(\mathrm{Y}:=\mathrm{Y}^{\prime}\);
    \(Y^{\prime}:=Q \vee[P \wedge \operatorname{Check}(E X(Y))] ;\)
\}
return Y ;
```


Binary Decision Diagrams (BDDs)

- Binary Decision Diagrams (BDDs)
- An efficient data structure for boolean formula manipulation.
- There are BDD packages available, e.g. CUDD from Colorado University http://vlsi.colorado.edu/~fabio/CUDD/cuddllntro.html
- BDD data structure can be used to implement the symbolic model checking algorithms discussed above.
- BDDs are canonical representation for boolean logic formulas, i.e.
- given formulas F and G, they are $F \Leftrightarrow G$ if their BDD representations will be identical.

Binary Decision Trees (BDT)

Fix a variable order, in each level of the tree branch one value of the variable in that level.

- Examples of BDT-s for boolean formulas on two variables: Variable order: x, y

Transforming BDT to BDD

- Repeatedly apply the following transformations to a BDT:
- Remove duplicate terminals \& redraw connections to remaining terminals that have same name as deleted ones
- Remove duplicate non-terminals \& ...
- Remove redundant tests
- These transformations transform the tree to a directed acyclic graph binary decision diagram (BDD).

Binary Decision Trees vs. BDDs

False

- redundant node

Good News About BDDs

- Given BDDs for two boolean logic formulas F and G,
- the BDDs for $F \wedge G$ and $F \vee G$ are of size $|F| \times|G|$ (and can be computed in that time)
- the BDD for $\neg \mathrm{F}$ is of size $|\mathrm{F}|$ (and can be computed in that time)
- Equivalence $\mathrm{F} \equiv$? G can be checked in constant time
- Satisfiability of F can be checked in constant time
- But, this does not mean that one can solve SAT in constant time (it is NP-complete problem).

Bad News About BDDs

- The size of a BDD can be exponential in the number of boolean variables
- The sizes of the BDDs are very sensitive to the ordering of variables. Bad variable ordering can cause exponential increase in the size of the BDD
- There are functions which have BDDs that are exponential for any variable ordering (for example binary multiplication)
- Pre-condition computation requires existential variable elimination
- Existential variable elimination can cause an exponential blow-up in the size of the BDD

BDDs are Sensitive to Variable Ordering

Identity relation for two variables: $\left(x^{\prime} \leftrightarrow x\right) \wedge\left(y^{\prime} \leftrightarrow y\right)$

Variable order: $\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{y}, \mathrm{y}$ '

For n variables, $3 n+2$ nodes

Variable order: $x, y, x^{\prime}, y^{\prime}$

For n variables, $3 \times 2^{n}-1$ nodes

What About LTL and CTL* Model Checking?

- The complexity of the model checking problem for LTL and CTL* is:
$-(|S|+|R|) \times 2^{\mathrm{O}(f)}$
where $|f|$ is the number of logic connectives in f
- Typically the size of the formula is much smaller than the size of the transition system
- So the exponential complexity in the size of the formula is not very significant in practice
- LTL properties are intuitive and easy to write correctly
- XF φ and $\mathrm{FX} \varphi$ are equivalent in LTL
- AXAF φ and AFAX φ are not equivalent in CTL

