
Model Checking

CTL model checking algorithms

Many slides from Tevfik Bultan

Recall: Linear Time vs. Branching Time

• In linear time logics we look at execution paths individually

• In branching time logics we view the computation

alternatives as a tree

– computation tree unrolls the transition relation

s2 s1 s4 s3

Transition System Execution Paths Computation Tree

s3

s4

s3

s3

s1

s2
.
.
.

.

.

.

s3

s4

s3

s3

s1

s2

.

.

.

.

.

.

s3 s4 s1

.

.

.

.

.

.

s4 s1

Recall: Computation Tree Logic (CTL)

• In CTL we quantify over the paths in the computation tree

• We use the same temporal operators as in LTL: X, G, F, U

• We attach path quantifiers to these temporal operators:

– A : for all paths

– E : there exists a path

• We end up with eight temporal operator pairs:

– AX, EX, AG, EG, AF, EF, AU, EU

Examples



EX (exists next)



AX (all next)











EG (exists global)





  

    

AG (all global)



Examples (continued)



EF (exists future)



 

AF (all future)









 EU (exists until)





 



 AU (all until)



Automated Verification of Finite State Systems
[Clarke and Emerson 81], [Queille and Sifakis 82]

• CTL Model checking problem:

 Given a transition system T = (S, I, R), and a CTL formula ,

does the transition system T satisfy the property ?

 CTL model checking problem can be solved in

Note:

– the complexity is linear in the size of the transition

system T

– the complexity is exponential in the number of variables

of  and S in the number of concurrent components of T

  This is called the state space explosion problem.

O(| |  (|S|+|R|))

• Translate the formula to a formula which uses only the basis

 EX , EG ,  EU

• Key idea of the CTL model checking algorithms:

 M,s0 |= p?

– Initially, the states S are labeled with atomic propositions from set AP.

– Label the states of M with subformulas of p that hold in these states

(start from the innermost non-atomic subformulas of p).

– Each (temporal or boolean) operator has to be processed only once.

– Graph traversal algorithms (DFS or BFS) are used to find the labeling

for each operator.

• Computation of each sub-formula takes O(|S|+|R|).

CTL Model Checking Algorithm

• EX  is easy to do in O(|S|+|R|)

– All the nodes which have a next state labeled with  should be

labeled with EX 

•  EU : Find the states which are the initial states of a path where  U

holds

Equivalently,

– find the nodes which reach  labeled node by a path where each

node is labeled with 

– Label such nodes with  EU

It is a reachability problem which can be solved in O(|S|+|R|)

CTL Model Checking Algorithms: intuition

CTL Model Checking Algorithms: intuition

 EG  :

Find paths where each node is labeled with  and label nodes in such

paths with EG  :

– First remove all the states which do not satisfy  from the transition

graph

– Compute the connected components of the remaining graph and

then find the nodes which can reach the connected components

(both of which can be done in O(|S|+|R|)

– Label the nodes with EG  in the connected components and the

nodes that can reach the connected components.

Verification vs. Falsification

• Verification:

– Show that initial states  truth set of 

• Falsification:

– Find if a state  (initial states  truth set of )

– Generate a counter-example starting from that state

• CTL model checking algorithm can also generate a counter-example

path (if the property is not satisfied) without increasing the complexity

• The ability to find counter-examples is one of the biggest strengths of

model checkers

Problems with the previous algorithm

It is named explicit state model checking

• All the states and labels associated to the states must be

recorded when doing states traversal

– needs a lot of memory

– causes exponential explosion of required memory

• the number of states |S| in the transition graph T is

exponential in the number of variables and concurrent

processes in the system modelled with LTS.

LTS – Labeled Transition System

Inroduction to symbolic state model checking

• How to deal with exponential explosion of the memory

space for CTL model checking???

Characterization of Temporal operators as Fixpoints
[Emerson & Clarke 80]: Think about temporal op-s as recursive functions on sets

Here are some interesting CTL equivalences (for a state of computation tree)

AG  =   AX AG 

EG  =   EX EG 

AF  =   AX AF 

EF  =   EX EF 

 AU =   (  AX ( AU))

 EU =   (  EX ( EU))

Note:

 We “unfold” the property by rewriting the CTL temporal operators using
op-s themselves and EX and AX operators.

function
argument

value

Functionals (mapping of an arbitrary set into a set)

• Given a transition system T=(S, I, R), we will define functions from sets

of states to sets of states

– f : 2S  2S 2S – set of subsets of S

• For example, one such function is the EX operator (which computes the

“pre-image” of a set of states given a relation R)

– EX : 2S  2S

which can be defined as:

EX() = { s | (s, s’)  R and s’   }

Abuse of notation:

 Generally, [| |] denotes the set of states which satisfy the property ,

i.e., the truth set of . Here we use just  in the same sense.

Functionals

• Now, we can think of all temporal operators also as

functionals from sets of states to sets of states

• For example,

in logic notation:

AX  = EX( )

or if we use set notation

AX  = (S - EX(S - ))

Abuse of notation: we will use the set

and logic notations interchangeably.

Logic Set

false 

true S

  S – 

   

   

Based on the equivalence EF  =   EX EF 

we observe that EF is a fixpoint of the following function:

 f y =   EX y, where y = EF 

 i.e., f y = y

In fact, EF  is the least fixpoint of f, which is written as:

 EF  =  y .   EX y

Temporal Properties as Fixpoints (1)

function
argument

Value of the argument
that is fp

EF Fixpoint Computation

• • • 

EF()  states from where  is reachable    EX()  EX(EX())  ...

EF()

Temporal Properties as Fixpoints (2)

Based on the equivalence EG  =   EX EG 

we observe that EG  is a fixpoint of the following function:

 f y =   EX y,

 i.e., f (EG ) = EG 

In fact, EG  is the greatest fixpoint of f, which is written as:

 EG  =  y .   EX y

 function
argument

Value of argument
that is FP

EG Fixpoint Computation

• • • EG()

EG()  “states that can avoid reaching  ”    EX()  EX(EX())  ...

-Calculus

-Calculus is a temporal logic which consist of :

• Atomic properties AP

• Boolean connectives:  ,  , 
• Pre-image operator: EX

• Least and greatest fixpoint operators:  y. F y and  y. F y

Any CTL* formula can be expressed in -calculus

Symbolic Model Checking
[McMillan et al. LICS 90]

• Represent sets of states S and the transition relation R as

Boolean logic formulas

• Fixpoint computation becomes formula manipulation, i.e.

– pre-condition (EX) computation:
including existentially bound variable elimination

– conjunction (intersection), disjunction (union) and

negation (set difference), and equivalence check

• Use an efficient data structure for boolean logic formulas

– Binary Decision Diagrams (BDDs)

Example: Mutual Exclusion Protocol

Process 1:

while (true) {

 out: a := true; turn := true;

 wait: await (b = false or turn = false);

 cs: a := false;

}

||

Process 2:

while (true) {

 out: b := true; turn := false;

 wait: await (a = false or turn);

 cs: b := false;

}

Two concurrently executing processes are trying to enter their

critical section without violating mutual exclusion condition

Encoding State Space S

• Encode the state space using only boolean variables

• Two program counter variables: pc1, pc2

with domains {out, wait, cs}

– We need two boolean variables per program counter to
encode their 3 values:

pc10, pc11, pc20, pc21 .

– Encoding:

 pc10  pc11  pc1 = out

 pc10  pc11  pc1 = wait

 pc10  pc11  pc1 = cs

• The other three variables are already booleans: turn, a , b

Encoding State Space S

• Each state can be written as a tuple:

 (pc10, pc11, pc20, pc21, turn, a, b)

– After encoding:

(o,o,F,F,F)becomes (F,F,F,F,F,F,F)

(o,c,F,T,F)becomes (F,F,T,T,F,T,F)

• We can use boolean logic formulas on the variables

pc10,pc11,pc20,pc21,turn,a,b to represent sets of states:

{(F,F,F,F,F,F,F)}  pc10   pc11  pc20   pc21   turn  a  b

{(F,F,T,T,F,F,T)}  pc10   pc11  pc20  pc21   turn  a  b

{(F,F,F,F,F,F,F), (F,F,T,T,F,F,T)}  pc10   pc11  pc20   pc21  

turn  a  b  pc10   pc11  pc20  pc21   turn  a  b

 pc10   pc11   turn  b  (pc20  pc21  b)

Encoding Initial States

• We can write the initial states as a boolean logic formula

– recall that, initially: pc1=o and pc2=o but other

variables may have any value in their domain

I  {(o,o,F,F,F), (o,o,F,F,T), (o,o,F,T,F),

(o,o,F,T,T), (o,o,T,F,F), (o,o,T,F,T),

(o,o,T,T,F), (o,o,T,T,T)}

 pc10   pc11  pc20   pc21

 meaning that

 pc1 and pc2 are set to false and other variables may have

arbitrary boolean values

Encoding the Transition Relation

• We can use boolean logic formulas and primed variables to

encode the transition relation R.

• We will use two sets of variables:

– Current state variables: pc10,pc11,pc20,pc21,turn,a,b

– Next state variables: pc10’,pc11’,pc20’,pc21’,turn’,a’,b’

• For example, we can write a boolean logic formula for the
statement of process 1:

cs: a := false;

as follows

pc10  pc11  pc10’  pc11’  a’ 

(pc20’pc20) (pc21’pc21)(turn’turn)(b’b)

– Call this formula R1c

Encoding the Transition Relation

• Similarly we can write a formula Rij for each statement in

the program

• Then the overall transition relation is

R  R1o  R1w  R1c  R2o  R2w  R2c

But how to interprete temporal operators of p on symbolic

representation of M??

Symbolic Pre-condition Computation

• Recall the pre-image function

EX : 2S  2S

which is defined as:

EX() = { s | (s,s’)  R and s’  [| |]}

• We can symbolically compute pre as follows

EX()  V’ (R   [V’ / V])

– V : values of boolean variables in the current-state

– V’ : values of boolean variables in the next-state

–  [V’ / V] : rename variables in  by replacing current-state variables

with the corresponding next-state variables

– V’ f: existentially quantify out all the variables in V’ from f

Renaming

• Assume that we have two variables x, y.

• Then, V = {x, y} and V’={x’, y’}

• Renaming example:

 Given   x  y :

[V’ / V]  x  y [V’ / V]  x’  y’

Existential Quantifier Elimination

• Given a boolean formula f and a single variable v

v f  f [true/v]  f [false/v]

i.e., to existentially quantify out a variable, first set it to true then set it
to false and then take the disjunction of the two results.

• Example: f  x  y  x’  y’

 V’ f  x’ (y’ (x  y  x’  y’))

 x’ ((x  y  x’  y’)[true/y’]  (x  y  x’  y’)[false/y’])

 x’ (x  y  x’  true  x  y  x’  false)

 x’(x  y  x’)

 (x  y  x’)[true/x’]  (x  y  x’)[false/x’])

 x  y  true  x  y  false

 x  y

An Extremely Simple Example

Variables: x, y: boolean

Set of states:

S = {(F,F), (F,T), (T,F), (T,T)}

S  true

Initial condition:

I   x   y

Transition relation (negates one variable at a time):

R  x’=x  y’=y  x’=x  y’=y (= means )

F,T

F,F

T,T

T,F

An Extremely Simple Example

Given   x  y, compute EX()

EX()  V’ R  [V’ / V]

 V’ R  x’  y’

 V’ (x’=x  y’=y  x’=x  y’=y)  x’  y’

 V’ (x’=x  y’=y)  x’  y’  (x’=x  y’=y)  x’  y’

 V’ x  y  x’  y’  x  y  x’  y’

 x  y  x  y

EX(x  y)  x  y  x  y

In other words EX({(T,T)})  {(F,T), (T,F)}

F,T

F,F

T,T

T,F

| by distr

| by 

| by substit

| by  -elimination

An Extremely Simple Example

Let’s compute EF(x  y)

The fixpoint sequence is

False, xy , xy  EX(xy) , xy  EX (xy  EX(xy)) , ...

If we do the EX computations, we get:

False, x  y , x  y  x  y  x  y, True

EF(x  y)  True

In other words EF({(T,T)})  {(F,F),(F,T), (T,F),(T,T)}

F,T

F,F

T,T

T,F

0 1 2 3

1

2

3

An Extremely Simple Example

• Based on our results, for extremely simple transition system

T = (S, I, R) we have

If

I  EF(x  y) ( corresponds to implication) hence:

T |= EF(x  y)

(i.e., there exists a path from each initial state where

eventually x and y both become true in the same state)

If

I  EX(x  y) hence:

T |= EX(x  y)

(i.e., there does not exist a path from each initial state where

in the next state x and y both become true)

An Extremely Simple Example

• Let’s try one more property AF(x  y)

• To check this property we first convert it to a formula which

uses only the temporal operators in our basis:

 AF(x  y)   EG((x  y))

i.e.,

 if we can find an initial state which satisfies EG((x  y)),

then we know that the transition system T does not satisfy

the property AF(x  y)

An Extremely Simple Example

Let’s compute EG((x  y))

The fixpoint sequence is:

True, x  y, (x  y)  EX(x  y) , …

If we do the EX computations, we get:

True, x  y, x  y,

EG((x  y))  x  y

Since I  EG((x  y))   we conclude that T |= AF(x  y)

F,T

F,F

T,T

T,F

0 1 2

0

1

Symbolic CTL Model Checking Algorithm (in general)

• Translate the formula to a formula which uses the basis

– EX , EG ,  EU

• Atomic formulas can be interpreted directly on the state representation

• For EX  compute the pre-image using existential variable elimination

as we discussed

• For EG and EU compute the fixpoints iteratively

Symbolic Model Checking Algorithm

Check(f : CTL formula) : boolean logic formula

(here we use logic encoding of sets of states)

 case: f  AP return f;

 case: f    return Check();

 case: f     return Check()  Check();

 case: f     return Check()  Check();

 case: f  EX  return V’R  Check()[V’/V];

Symbolic Model Checking Algorithm

Check(f)

 …

 case: f  EG 

 Y := True;

 P := Check();

 Y’ := P  Check(EX(Y));

 while (Y  Y’)

 {

 Y := Y’;

 Y’ := P  Check(EX(Y));

 }

 return Y;

Symbolic Model Checking Algorithm

Check(f)

 …

 case: f   EU

 Y := False;

 P := Check();

 Q := Check();

 Y’ := Q  [P  Check(EX(Y))];

 while (Y  Y’)

 {

 Y := Y’;

 Y’:= Q  [P  Check(EX(Y))];

 }

 return Y;

Binary Decision Diagrams (BDDs)

• Binary Decision Diagrams (BDDs)

– An efficient data structure for boolean formula manipulation.

– There are BDD packages available, e.g. CUDD from Colorado

University http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

• BDD data structure can be used to implement the symbolic model

checking algorithms discussed above.

• BDDs are canonical representation for boolean logic formulas, i.e.

– given formulas F and G, they are F  G if their BDD

representations will be identical.

Binary Decision Trees (BDT)

Fix a variable order, in each level of the tree branch one value

of the variable in that level.

• Examples of BDT-s for boolean formulas on two variables:

Variable order: x, y

F

F

F

T

T

T

x

y y

T

F T

T

x  y

F

F

F

T

T

F

x

y y

F

F T

T

x  y

F

F

F

T

T

F

x

y y

T

F T

T

x

F

F

F

T

T

F

x

y y

F

F T

F

False

Transforming BDT to BDD

• Repeatedly apply the following transformations to a BDT:

– Remove duplicate terminals &

 redraw connections to remaining terminals that have same name as

deleted ones

– Remove duplicate non-terminals & ...

– Remove redundant tests

• These transformations transform the tree to a directed acyclic graph –

binary decision diagram (BDD).

Binary Decision Trees vs. BDDs

F

F

F

T

T

T

x

y y

T

F T

T

x  y

F

F

F

T

T

F

x

y y

F

F T

T

x  y

F

F

F

T

T

F

x

y y

T

F T

T

x

F

F

F

T

T

F

x

y y

F

F T

F

False

F

F

F

T

T

T

x

y

F

F

F

T

T

T

x

y
F

F T

T

x F

- redundant node

Good News About BDDs

• Given BDDs for two boolean logic formulas F and G,

– the BDDs for F  G and F  G are of size |F|  |G| (and

can be computed in that time)

– the BDD for F is of size |F| (and can be computed in

that time)

– Equivalence F ? G can be checked in constant time

– Satisfiability of F can be checked in constant time

• But, this does not mean that one can solve SAT in

constant time (it is NP-complete problem).

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete

Bad News About BDDs

• The size of a BDD can be exponential in the number of boolean
variables

• The sizes of the BDDs are very sensitive to the ordering of variables.
Bad variable ordering can cause exponential increase in the size of the
BDD

• There are functions which have BDDs that are exponential for any
variable ordering (for example binary multiplication)

• Pre-condition computation requires existential variable elimination

– Existential variable elimination can cause an exponential blow-up in
the size of the BDD

BDDs are Sensitive to Variable Ordering

Identity relation for two variables: (x’  x)  (y'  y)

T

F

F

F

T

F

y

y’

F

F

T

T

x

x’ x’

y’

T

T T
F

Variable order: x, x’, y, y'

For n variables, 3n+2 nodes

T

F

F

F T

F

x’

y’

F

F

T

T

x

y y

y’

T

T

T

F

Variable order: x, y, x’, y'

For n variables, 3 2n –1 nodes

x’ x’ x’

T

F

F T

F

T

What About LTL and CTL* Model Checking?

• The complexity of the model checking problem for LTL and

CTL* is:

– (|S|+|R|)  2O(|f|)

where | f | is the number of logic connectives in f

• Typically the size of the formula is much smaller than the

size of the transition system

– So the exponential complexity in the size of the formula

is not very significant in practice

• LTL properties are intuitive and easy to write correctly

– XF  and FX  are equivalent in LTL

– AXAF  and AFAX  are not equivalent in CTL

