
Model Checking

CTL model checking algorithms

Many slides from Tevfik Bultan

Recall: Linear Time vs. Branching Time

• In linear time logics we look at execution paths individually

• In branching time logics we view the computation

alternatives as a tree

– computation tree unrolls the transition relation

s2 s1 s4 s3

Transition System Execution Paths Computation Tree

s3

s4

s3

s3

s1

s2
.
.
.

.

.

.

s3

s4

s3

s3

s1

s2

.

.

.

.

.

.

s3 s4 s1

.

.

.

.

.

.

s4 s1

Recall: Computation Tree Logic (CTL)

• In CTL we quantify over the paths in the computation tree

• We use the same temporal operators as in LTL: X, G, F, U

• We attach path quantifiers to these temporal operators:

– A : for all paths

– E : there exists a path

• We end up with eight temporal operator pairs:

– AX, EX, AG, EG, AF, EF, AU, EU

Examples

EX (exists next)

AX (all next)

EG (exists global)

AG (all global)

Examples (continued)

EF (exists future)

AF (all future)

 EU (exists until)

 AU (all until)

Automated Verification of Finite State Systems
[Clarke and Emerson 81], [Queille and Sifakis 82]

• CTL Model checking problem:

 Given a transition system T = (S, I, R), and a CTL formula ,

does the transition system T satisfy the property ?

 CTL model checking problem can be solved in

Note:

– the complexity is linear in the size of the transition

system T

– the complexity is exponential in the number of variables

of and S in the number of concurrent components of T

 This is called the state space explosion problem.

O(| | (|S|+|R|))

• Translate the formula to a formula which uses only the basis

 EX , EG , EU

• Key idea of the CTL model checking algorithms:

 M,s0 |= p?

– Initially, the states S are labeled with atomic propositions from set AP.

– Label the states of M with subformulas of p that hold in these states

(start from the innermost non-atomic subformulas of p).

– Each (temporal or boolean) operator has to be processed only once.

– Graph traversal algorithms (DFS or BFS) are used to find the labeling

for each operator.

• Computation of each sub-formula takes O(|S|+|R|).

CTL Model Checking Algorithm

• EX is easy to do in O(|S|+|R|)

– All the nodes which have a next state labeled with should be

labeled with EX

• EU : Find the states which are the initial states of a path where U

holds

Equivalently,

– find the nodes which reach labeled node by a path where each

node is labeled with

– Label such nodes with EU

It is a reachability problem which can be solved in O(|S|+|R|)

CTL Model Checking Algorithms: intuition

CTL Model Checking Algorithms: intuition

 EG :

Find paths where each node is labeled with and label nodes in such

paths with EG :

– First remove all the states which do not satisfy from the transition

graph

– Compute the connected components of the remaining graph and

then find the nodes which can reach the connected components

(both of which can be done in O(|S|+|R|)

– Label the nodes with EG in the connected components and the

nodes that can reach the connected components.

Verification vs. Falsification

• Verification:

– Show that initial states truth set of

• Falsification:

– Find if a state (initial states truth set of)

– Generate a counter-example starting from that state

• CTL model checking algorithm can also generate a counter-example

path (if the property is not satisfied) without increasing the complexity

• The ability to find counter-examples is one of the biggest strengths of

model checkers

Problems with the previous algorithm

It is named explicit state model checking

• All the states and labels associated to the states must be

recorded when doing states traversal

– needs a lot of memory

– causes exponential explosion of required memory

• the number of states |S| in the transition graph T is

exponential in the number of variables and concurrent

processes in the system modelled with LTS.

LTS – Labeled Transition System

Inroduction to symbolic state model checking

• How to deal with exponential explosion of the memory

space for CTL model checking???

Characterization of Temporal operators as Fixpoints
[Emerson & Clarke 80]: Think about temporal op-s as recursive functions on sets

Here are some interesting CTL equivalences (for a state of computation tree)

AG = AX AG

EG = EX EG

AF = AX AF

EF = EX EF

 AU = (AX (AU))

 EU = (EX (EU))

Note:

 We “unfold” the property by rewriting the CTL temporal operators using
op-s themselves and EX and AX operators.

function
argument

value

Functionals (mapping of an arbitrary set into a set)

• Given a transition system T=(S, I, R), we will define functions from sets

of states to sets of states

– f : 2S 2S 2S – set of subsets of S

• For example, one such function is the EX operator (which computes the

“pre-image” of a set of states given a relation R)

– EX : 2S 2S

which can be defined as:

EX() = { s | (s, s’) R and s’ }

Abuse of notation:

 Generally, [| |] denotes the set of states which satisfy the property ,

i.e., the truth set of . Here we use just in the same sense.

Functionals

• Now, we can think of all temporal operators also as

functionals from sets of states to sets of states

• For example,

in logic notation:

AX = EX()

or if we use set notation

AX = (S - EX(S -))

Abuse of notation: we will use the set

and logic notations interchangeably.

Logic Set

false

true S

 S –

Based on the equivalence EF = EX EF

we observe that EF is a fixpoint of the following function:

 f y = EX y, where y = EF

 i.e., f y = y

In fact, EF is the least fixpoint of f, which is written as:

 EF = y . EX y

Temporal Properties as Fixpoints (1)

function
argument

Value of the argument
that is fp

EF Fixpoint Computation

• • •

EF() states from where is reachable EX() EX(EX()) ...

EF()

Temporal Properties as Fixpoints (2)

Based on the equivalence EG = EX EG

we observe that EG is a fixpoint of the following function:

 f y = EX y,

 i.e., f (EG) = EG

In fact, EG is the greatest fixpoint of f, which is written as:

 EG = y . EX y

 function
argument

Value of argument
that is FP

EG Fixpoint Computation

• • • EG()

EG() “states that can avoid reaching ” EX() EX(EX()) ...

-Calculus

-Calculus is a temporal logic which consist of :

• Atomic properties AP

• Boolean connectives: , ,
• Pre-image operator: EX

• Least and greatest fixpoint operators: y. F y and y. F y

Any CTL* formula can be expressed in -calculus

Symbolic Model Checking
[McMillan et al. LICS 90]

• Represent sets of states S and the transition relation R as

Boolean logic formulas

• Fixpoint computation becomes formula manipulation, i.e.

– pre-condition (EX) computation:
including existentially bound variable elimination

– conjunction (intersection), disjunction (union) and

negation (set difference), and equivalence check

• Use an efficient data structure for boolean logic formulas

– Binary Decision Diagrams (BDDs)

Example: Mutual Exclusion Protocol

Process 1:

while (true) {

 out: a := true; turn := true;

 wait: await (b = false or turn = false);

 cs: a := false;

}

||

Process 2:

while (true) {

 out: b := true; turn := false;

 wait: await (a = false or turn);

 cs: b := false;

}

Two concurrently executing processes are trying to enter their

critical section without violating mutual exclusion condition

Encoding State Space S

• Encode the state space using only boolean variables

• Two program counter variables: pc1, pc2

with domains {out, wait, cs}

– We need two boolean variables per program counter to
encode their 3 values:

pc10, pc11, pc20, pc21 .

– Encoding:

 pc10 pc11 pc1 = out

 pc10 pc11 pc1 = wait

 pc10 pc11 pc1 = cs

• The other three variables are already booleans: turn, a , b

Encoding State Space S

• Each state can be written as a tuple:

 (pc10, pc11, pc20, pc21, turn, a, b)

– After encoding:

(o,o,F,F,F)becomes (F,F,F,F,F,F,F)

(o,c,F,T,F)becomes (F,F,T,T,F,T,F)

• We can use boolean logic formulas on the variables

pc10,pc11,pc20,pc21,turn,a,b to represent sets of states:

{(F,F,F,F,F,F,F)} pc10 pc11 pc20 pc21 turn a b

{(F,F,T,T,F,F,T)} pc10 pc11 pc20 pc21 turn a b

{(F,F,F,F,F,F,F), (F,F,T,T,F,F,T)} pc10 pc11 pc20 pc21

turn a b pc10 pc11 pc20 pc21 turn a b

 pc10 pc11 turn b (pc20 pc21 b)

Encoding Initial States

• We can write the initial states as a boolean logic formula

– recall that, initially: pc1=o and pc2=o but other

variables may have any value in their domain

I {(o,o,F,F,F), (o,o,F,F,T), (o,o,F,T,F),

(o,o,F,T,T), (o,o,T,F,F), (o,o,T,F,T),

(o,o,T,T,F), (o,o,T,T,T)}

 pc10 pc11 pc20 pc21

 meaning that

 pc1 and pc2 are set to false and other variables may have

arbitrary boolean values

Encoding the Transition Relation

• We can use boolean logic formulas and primed variables to

encode the transition relation R.

• We will use two sets of variables:

– Current state variables: pc10,pc11,pc20,pc21,turn,a,b

– Next state variables: pc10’,pc11’,pc20’,pc21’,turn’,a’,b’

• For example, we can write a boolean logic formula for the
statement of process 1:

cs: a := false;

as follows

pc10 pc11 pc10’ pc11’ a’

(pc20’pc20) (pc21’pc21)(turn’turn)(b’b)

– Call this formula R1c

Encoding the Transition Relation

• Similarly we can write a formula Rij for each statement in

the program

• Then the overall transition relation is

R R1o R1w R1c R2o R2w R2c

But how to interprete temporal operators of p on symbolic

representation of M??

Symbolic Pre-condition Computation

• Recall the pre-image function

EX : 2S 2S

which is defined as:

EX() = { s | (s,s’) R and s’ [| |]}

• We can symbolically compute pre as follows

EX() V’ (R [V’ / V])

– V : values of boolean variables in the current-state

– V’ : values of boolean variables in the next-state

– [V’ / V] : rename variables in by replacing current-state variables

with the corresponding next-state variables

– V’ f: existentially quantify out all the variables in V’ from f

Renaming

• Assume that we have two variables x, y.

• Then, V = {x, y} and V’={x’, y’}

• Renaming example:

 Given x y :

[V’ / V] x y [V’ / V] x’ y’

Existential Quantifier Elimination

• Given a boolean formula f and a single variable v

v f f [true/v] f [false/v]

i.e., to existentially quantify out a variable, first set it to true then set it
to false and then take the disjunction of the two results.

• Example: f x y x’ y’

 V’ f x’ (y’ (x y x’ y’))

 x’ ((x y x’ y’)[true/y’] (x y x’ y’)[false/y’])

 x’ (x y x’ true x y x’ false)

 x’(x y x’)

 (x y x’)[true/x’] (x y x’)[false/x’])

 x y true x y false

 x y

An Extremely Simple Example

Variables: x, y: boolean

Set of states:

S = {(F,F), (F,T), (T,F), (T,T)}

S true

Initial condition:

I x y

Transition relation (negates one variable at a time):

R x’=x y’=y x’=x y’=y (= means)

F,T

F,F

T,T

T,F

An Extremely Simple Example

Given x y, compute EX()

EX() V’ R [V’ / V]

 V’ R x’ y’

 V’ (x’=x y’=y x’=x y’=y) x’ y’

 V’ (x’=x y’=y) x’ y’ (x’=x y’=y) x’ y’

 V’ x y x’ y’ x y x’ y’

 x y x y

EX(x y) x y x y

In other words EX({(T,T)}) {(F,T), (T,F)}

F,T

F,F

T,T

T,F

| by distr

| by

| by substit

| by -elimination

An Extremely Simple Example

Let’s compute EF(x y)

The fixpoint sequence is

False, xy , xy EX(xy) , xy EX (xy EX(xy)) , ...

If we do the EX computations, we get:

False, x y , x y x y x y, True

EF(x y) True

In other words EF({(T,T)}) {(F,F),(F,T), (T,F),(T,T)}

F,T

F,F

T,T

T,F

0 1 2 3

1

2

3

An Extremely Simple Example

• Based on our results, for extremely simple transition system

T = (S, I, R) we have

If

I EF(x y) (corresponds to implication) hence:

T |= EF(x y)

(i.e., there exists a path from each initial state where

eventually x and y both become true in the same state)

If

I EX(x y) hence:

T |= EX(x y)

(i.e., there does not exist a path from each initial state where

in the next state x and y both become true)

An Extremely Simple Example

• Let’s try one more property AF(x y)

• To check this property we first convert it to a formula which

uses only the temporal operators in our basis:

 AF(x y) EG((x y))

i.e.,

 if we can find an initial state which satisfies EG((x y)),

then we know that the transition system T does not satisfy

the property AF(x y)

An Extremely Simple Example

Let’s compute EG((x y))

The fixpoint sequence is:

True, x y, (x y) EX(x y) , …

If we do the EX computations, we get:

True, x y, x y,

EG((x y)) x y

Since I EG((x y)) we conclude that T |= AF(x y)

F,T

F,F

T,T

T,F

0 1 2

0

1

Symbolic CTL Model Checking Algorithm (in general)

• Translate the formula to a formula which uses the basis

– EX , EG , EU

• Atomic formulas can be interpreted directly on the state representation

• For EX compute the pre-image using existential variable elimination

as we discussed

• For EG and EU compute the fixpoints iteratively

Symbolic Model Checking Algorithm

Check(f : CTL formula) : boolean logic formula

(here we use logic encoding of sets of states)

 case: f AP return f;

 case: f return Check();

 case: f return Check() Check();

 case: f return Check() Check();

 case: f EX return V’R Check()[V’/V];

Symbolic Model Checking Algorithm

Check(f)

 …

 case: f EG

 Y := True;

 P := Check();

 Y’ := P Check(EX(Y));

 while (Y Y’)

 {

 Y := Y’;

 Y’ := P Check(EX(Y));

 }

 return Y;

Symbolic Model Checking Algorithm

Check(f)

 …

 case: f EU

 Y := False;

 P := Check();

 Q := Check();

 Y’ := Q [P Check(EX(Y))];

 while (Y Y’)

 {

 Y := Y’;

 Y’:= Q [P Check(EX(Y))];

 }

 return Y;

Binary Decision Diagrams (BDDs)

• Binary Decision Diagrams (BDDs)

– An efficient data structure for boolean formula manipulation.

– There are BDD packages available, e.g. CUDD from Colorado

University http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

• BDD data structure can be used to implement the symbolic model

checking algorithms discussed above.

• BDDs are canonical representation for boolean logic formulas, i.e.

– given formulas F and G, they are F G if their BDD

representations will be identical.

Binary Decision Trees (BDT)

Fix a variable order, in each level of the tree branch one value

of the variable in that level.

• Examples of BDT-s for boolean formulas on two variables:

Variable order: x, y

F

F

F

T

T

T

x

y y

T

F T

T

x y

F

F

F

T

T

F

x

y y

F

F T

T

x y

F

F

F

T

T

F

x

y y

T

F T

T

x

F

F

F

T

T

F

x

y y

F

F T

F

False

Transforming BDT to BDD

• Repeatedly apply the following transformations to a BDT:

– Remove duplicate terminals &

 redraw connections to remaining terminals that have same name as

deleted ones

– Remove duplicate non-terminals & ...

– Remove redundant tests

• These transformations transform the tree to a directed acyclic graph –

binary decision diagram (BDD).

Binary Decision Trees vs. BDDs

F

F

F

T

T

T

x

y y

T

F T

T

x y

F

F

F

T

T

F

x

y y

F

F T

T

x y

F

F

F

T

T

F

x

y y

T

F T

T

x

F

F

F

T

T

F

x

y y

F

F T

F

False

F

F

F

T

T

T

x

y

F

F

F

T

T

T

x

y
F

F T

T

x F

- redundant node

Good News About BDDs

• Given BDDs for two boolean logic formulas F and G,

– the BDDs for F G and F G are of size |F| |G| (and

can be computed in that time)

– the BDD for F is of size |F| (and can be computed in

that time)

– Equivalence F ? G can be checked in constant time

– Satisfiability of F can be checked in constant time

• But, this does not mean that one can solve SAT in

constant time (it is NP-complete problem).

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete

Bad News About BDDs

• The size of a BDD can be exponential in the number of boolean
variables

• The sizes of the BDDs are very sensitive to the ordering of variables.
Bad variable ordering can cause exponential increase in the size of the
BDD

• There are functions which have BDDs that are exponential for any
variable ordering (for example binary multiplication)

• Pre-condition computation requires existential variable elimination

– Existential variable elimination can cause an exponential blow-up in
the size of the BDD

BDDs are Sensitive to Variable Ordering

Identity relation for two variables: (x’ x) (y' y)

T

F

F

F

T

F

y

y’

F

F

T

T

x

x’ x’

y’

T

T T
F

Variable order: x, x’, y, y'

For n variables, 3n+2 nodes

T

F

F

F T

F

x’

y’

F

F

T

T

x

y y

y’

T

T

T

F

Variable order: x, y, x’, y'

For n variables, 3 2n –1 nodes

x’ x’ x’

T

F

F T

F

T

What About LTL and CTL* Model Checking?

• The complexity of the model checking problem for LTL and

CTL* is:

– (|S|+|R|) 2O(|f|)

where | f | is the number of logic connectives in f

• Typically the size of the formula is much smaller than the

size of the transition system

– So the exponential complexity in the size of the formula

is not very significant in practice

• LTL properties are intuitive and easy to write correctly

– XF and FX are equivalent in LTL

– AXAF and AFAX are not equivalent in CTL

