

Model Checking

CTL model checking algorithms

Many slides from Tevfik Bultan

Recall: Linear Time vs. Branching Time

- In linear time logics we look at execution paths individually
- In branching time logics we view the computation alternatives as a tree
 - computation tree unrolls the transition relation

Recall: Computation Tree Logic (CTL)

- In CTL we quantify over the paths in the computation tree
- We use the same temporal operators as in LTL: X, G, F, U
- We attach path quantifiers to these temporal operators:
 - A : for all paths
 - E : there exists a path
- We end up with eight temporal operator pairs:
 AX, EX, AG, EG, AF, EF, AU, EU

Examples

EX*\varphi* (exists next)

EG*\varphi* (exists global)

___ / __

AX*\varphi* (all next)

 $AG\phi$ (all global)

Examples (continued)

EF *\varphi* (exists future)

*φ*EU*ψ* (exists until)

 $AF\phi$ (all future)

 $\varphi AU\psi$ (all until)

Automated Verification of Finite State Systems [Clarke and Emerson 81], [Queille and Sifakis 82]

CTL Model checking problem:
 Given a transition system *T* = (*S*, *I*, *R*), and a CTL formula *φ*, does the transition system *T* satisfy the property *φ*?

CTL model checking problem can be solved in

$O(|\varphi| \times (|S|+|R|))$

Note:

- the complexity is <u>linear</u> in the size of the transition system T
- the complexity is <u>exponential</u> in the number of variables of φ and S in the number of concurrent components of T
 - → This is called the *state space explosion* problem.

CTL Model Checking Algorithm

• Translate the formula to a formula which uses only the basis

EX φ , EG φ , φ EU ψ

- Key idea of the CTL model checking algorithms: $M, s_0 \models p?$
 - Initially, the states S are labeled with atomic propositions from set AP.
 - Label the states of *M* with subformulas of *p* that hold in these states (start from the innermost non-atomic subformulas of *p*).
 - Each (temporal or boolean) operator has to be processed only once.
 - Graph traversal algorithms (DFS or BFS) are used to find the labeling for each operator.
- Computation of each sub-formula takes O(|S|+|R|).

CTL Model Checking Algorithms: intuition

- **EX** φ is easy to do in O(|S|+|R|)
 - All the nodes which have a next state labeled with φ should be labeled with EX φ
- $\varphi EU \psi$: Find the states which are the initial states of a path where $\varphi U \psi$ holds

Equivalently,

- find the nodes which reach ψ labeled node by a path where each node is labeled with φ
- Label such nodes with $\varphi EU \psi$
- It is a reachability problem which can be solved in O(|S|+|R|)

CTL Model Checking Algorithms: intuition

EG *q* :

- Find paths where <u>each</u> node is labeled with φ and label nodes in such paths with EG φ :
 - First remove all the states which do not satisfy φ from the transition graph
 - Compute the connected components of the remaining graph and then find the nodes which can reach the connected components (both of which can be done in O(|S|+|R|)
 - Label the nodes with EG φ in the connected components and the nodes that can reach the connected components.

Verification vs. Falsification

- Verification:
 - Show that initial states \subseteq truth set of φ

Falsification:

- Find if a state \in (initial states \cap truth set of $\neg \phi$)
- Generate a counter-example starting from that state
- CTL model checking algorithm can also generate a counter-example path (if the property is not satisfied) *without increasing the complexity*
- The ability to find counter-examples is one of the biggest strengths of model checkers

Problems with the previous algorithm

It is named explicit state model checking

- All the states and labels associated to the states must be recorded when doing states traversal
 - needs a lot of memory
 - causes exponential explosion of required memory
 - the number of states |S| in the transition graph T is exponential in the number of variables and concurrent processes in the system modelled with LTS.

LTS – Labeled Transition System

Inroduction to symbolic state model checking

 How to deal with exponential explosion of the memory space for CTL model checking???

Characterization of Temporal operators as Fixpoints
[Emerson & Clarke 80]: Think about temporal op-s as recursive functions on sets
Here are some interesting CTL equivalences (for a state of computation tree)
value function

$$AG \varphi = \varphi \land AX AG \varphi$$

 $EG \varphi = \varphi \land EX EG \varphi$
 $AF \varphi = \varphi \lor AX AF \varphi$
 $EF \varphi = \varphi \lor EX EF \varphi$
 $\varphi AU\psi = \psi \lor (\varphi \land AX (\varphi AU\psi))$
 $\varphi EU\psi = \psi \lor (\varphi \land EX (\varphi EU\psi))$

Note:

We "unfold" the property by rewriting the CTL temporal operators using op-s themselves and EX and AX operators.

Functionals (mapping of an arbitrary set into a set)

 Given a transition system T=(S, I, R), we will define functions from sets of states to sets of states

 $-f: 2^{S} \rightarrow 2^{S}$ $2^{S} - set of subsets of S$

- For example, one such function is the EX operator (which computes the "pre-image" of a set of states given a relation *R*)
 - $EX: 2^S \rightarrow 2^S$

which can be defined as:

```
\mathsf{EX}(\boldsymbol{\varphi}) = \{ s \mid (s, s') \in R \text{ and } s' \in \boldsymbol{\varphi} \}
```

Abuse of notation:

Generally, $[|\varphi|]$ denotes the set of states which satisfy the property φ , i.e., the truth set of φ . Here we use just φ in the same sense.

Functionals

- Now, we can think of all temporal operators also as functionals from sets of states to sets of states
- For example,

in logic notation:

AX $\varphi = \neg EX(\neg \varphi)$

or if we use set notation

AX $\boldsymbol{\varphi} = (S - EX(S - \boldsymbol{\varphi}))$

Abuse of notation: we will use the set and logic notations interchangeably.

	<u>Logic</u>	<u>Set</u>
	false	Ø
	true	S
⇒	$\neg \phi$	S – <i>φ</i>
	$\boldsymbol{\varphi} \wedge \boldsymbol{\psi}$	$oldsymbol{arphi} \cap oldsymbol{arphi}$
	$\phi \lor \psi$	$oldsymbol{arphi} \cup oldsymbol{\psi}$

Temporal Properties as Fixpoints (1)

Based on the equivalence $EF \varphi = \varphi \lor EX EF \varphi$ we observe that $EF\varphi$ is a fixpoint of the following function: $fy = \varphi \lor EX y$, where $y = EF \varphi$

i.e.,
$$fy = y$$

In fact, EF φ is the <u>least fixpoint</u> of f, which is written as:

Value of the argument that is fp

EF Fixpoint Computation

Temporal Properties as Fixpoints (2)

Based on the equivalence EG $\varphi = \varphi \land EX EG \varphi$

we observe that EG φ is a fixpoint of the following function:

$$f y = \boldsymbol{\varphi} \wedge \mathsf{EX} y,$$

i.e., $f(EG \boldsymbol{\varphi}) = EG \boldsymbol{\varphi}$

In fact, EG φ is the <u>greatest fixpoint</u> of f, which is written as:

Value of argument that is FP

EG Fixpoint Computation

μ-Calculus

- Atomic properties AP
- Boolean connectives: \neg , \land , \lor
- Pre-image operator: EX
- Least and greatest fixpoint operators: μ y. F y and ν y. F y

Any CTL* formula can be expressed in μ -calculus

Symbolic Model Checking

[McMillan et al. LICS 90]

- Represent sets of states S and the transition relation R as Boolean logic formulas
- Fixpoint computation becomes formula manipulation, i.e.
 - pre-condition (EX) computation:

including existentially bound variable elimination

- conjunction (intersection), disjunction (union) and negation (set difference), and equivalence check
- Use an efficient data structure for boolean logic formulas
 - Binary Decision Diagrams (BDDs)

Example: Mutual Exclusion Protocol

Two concurrently executing processes are trying to enter their critical section without violating mutual exclusion condition

```
Process 1:
while (true) {
   out: a := true; turn := true;
  wait: await (b = false or turn = false);
   cs: a := false;
Process 2:
while (true) {
   out: b := true; turn := false;
  wait: await (a = false or turn);
   cs: b := false;
}
```

Encoding State Space S

- Encode the state space using only boolean variables
- Two program counter variables: pc1, pc2 with domains {out, wait, cs}
 - We need two boolean variables per program counter to encode their 3 values:

- Encoding:
 - $\neg pc1_0 \land \neg pc1_1 \equiv pc1 = out$ $\neg pc1_0 \land pc1_1 \equiv pc1 = wait$ $pc1_0 \land pc1_1 \equiv pc1 = cs$
- The other three variables are already booleans: turn, a, b

Encoding State Space S

- Each state can be written as a tuple: (pc1₀, pc1₁, pc2₀, pc2₁, turn, a, b)
 After encoding: (0,0,F,F,F) becomes (F,F,F,F,F,F,F,F) (0,C,F,T,F) becomes (F,F,T,T,F,T,F)
- We can use boolean logic formulas on the variables $pc1_0, pc1_1, pc2_0, pc2_1, turn, a, b$ to represent sets of states: $\{(F,F,F,F,F,F,F)\} \equiv \neg pc1_0 \land \neg pc1_1 \land \neg pc2_0 \land \neg pc2_1 \land \neg turn \land \neg a \land \neg b$ $\{(F,F,T,T,F,F,T)\} \equiv \neg pc1_0 \land \neg pc1_1 \land pc2_0 \land pc2_1 \land \neg turn \land \neg a \land b$

$$\{ (F,F,F,F,F,F,F), (F,F,T,T,F,F,T) \} \equiv \neg pc1_0 \land \neg pc1_1 \land \neg pc2_0 \land \neg pc2_1 \land \neg turn \land \neg a \land \neg b \lor \neg pc1_0 \land \neg pc1_1 \land pc2_0 \land pc2_1 \land \neg turn \land \neg a \land b \\ \equiv \neg pc1_0 \land \neg pc1_1 \land \neg turn \land \neg b \land (pc2_0 \land pc2_1 \leftrightarrow b)$$

Encoding Initial States

- We can write the initial states as a boolean logic formula

 recall that, initially: pc1=0 and pc2=0 but other
 variables may have any value in their domain

$$I = \{ (0,0,F,F,F), (0,0,F,F,T), (0,0,F,T,F), \\ (0,0,F,T,T), (0,0,T,F,F), (0,0,T,F,T), \\ (0,0,T,T,F), (0,0,T,T,T) \} \\ = \neg pc1_0 \land \neg pc1_1 \land \neg pc2_0 \land \neg pc2_1$$

meaning that

pc1 and pc2 are set to false and other variables may have arbitrary boolean values

Encoding the Transition Relation

- We can use boolean logic formulas and primed variables to encode the transition relation *R*.
- We will use two sets of variables:
 - Current state variables: pc1₀,pc1₁,pc2₀,pc2₁,turn,a,b
 - Next state variables: pc1₀',pc1₁',pc2₀',pc2₁',turn',a',b'
- For example, we can write a boolean logic formula for the statement of process 1:

cs: a := false;

as follows

 $\begin{array}{l} pc1_0 \wedge pc1_1 \wedge \neg pc1_0' \wedge \neg pc1_1' \wedge \neg a' \wedge \\ (pc2_0' \leftrightarrow pc2_0) \wedge (pc2_1' \leftrightarrow pc2_1) \wedge (turn' \leftrightarrow turn) \wedge (b' \leftrightarrow b) \\ - Call this formula R_{1c} \end{array}$

Encoding the Transition Relation

- Similarly we can write a formula R_{ij} for each statement in the program
- Then the overall transition relation is $R \equiv R_{1o} \lor R_{1w} \lor R_{1c} \lor R_{2o} \lor R_{2w} \lor R_{2c}$

But how to interprete temporal operators of *p* on symbolic representation of M??

Symbolic Pre-condition Computation

• Recall the pre-image function EX : $2^S \rightarrow 2^S$ which is defined as:

 $\mathsf{EX}(\boldsymbol{\varphi}) = \{ s \mid (s,s') \in R \text{ and } s' \in [|\boldsymbol{\varphi}|] \}$

- We can symbolically compute *pre* as follows
 EX(*φ*) ≡ ∃ V (R ∧ *φ* [V / V])
 - V: values of boolean variables in the current-state
 - -V: values of boolean variables in the next-state
 - φ [V / V] : rename variables in φ by replacing current-state variables with the corresponding next-state variables
 - $\exists V f$: existentially quantify out all the variables in V from f

Renaming

- Assume that we have two variables x, y.
- Then, *V* = {x, y} and *V* = {x', y'}
- Renaming example:

Given $\boldsymbol{\varphi} \equiv \mathbf{x} \wedge \mathbf{y}$: $\boldsymbol{\varphi}[\mathcal{V} / \mathcal{V}] \equiv \mathbf{x} \wedge \mathbf{y} [\mathcal{V} / \mathcal{V}] \equiv \mathbf{x}' \wedge \mathbf{y}'$

Existential Quantifier Elimination

Given a boolean formula *f* and a single variable *v* ∃*v f* ≡ *f* [*true*/*v*] ∨ *f* [*false*/*v*]
 i.e., to existentially quantify out a variable, first set it to true then set it to false and then take the disjunction of the two results.

• Example:
$$f \equiv \neg x \land y \land x' \land y'$$

 $\exists V' f \equiv \exists x' (\exists y' (\neg x \land y \land x' \land y'))$
 $\equiv \exists x' ((\neg x \land y \land x' \land y')[true/y'] \lor (\neg x \land y \land x' \land y')[false/y'])$
 $\equiv \exists x' (\neg x \land y \land x' \land true \lor \neg x \land y \land x' \land false)$
 $\equiv \exists x' (\neg x \land y \land x')$
 $\equiv (\neg x \land y \land x')[true/x'] \lor (\neg x \land y \land x')[false/x'])$
 $\equiv \neg x \land y \land true \lor \neg x \land y \land false$
 $\equiv \neg x \land y$


```
Variables: x, y: boolean
```

```
Set of states:

S = \{(F,F), (F,T), (T,F), (T,T)\}

S \equiv true
```


Initial condition: $I \equiv \neg x \land \neg y$

Transition relation (negates one variable at a time): $R \equiv x' = \neg x \land y' = y \lor x' = x \land y' = \neg y$ (= means \leftrightarrow)

$$EX(x \land y) \equiv \neg x \land y \lor x \land \neg y$$

In other words
$$EX(\{(\mathsf{T},\mathsf{T})\}) \equiv \{(\mathsf{F},\mathsf{T}), (\mathsf{T},\mathsf{F})\}$$

An Extremely Simple Example

Let's compute $EF(x \land y)$

The fixpoint sequence is

False, $x \land y$, $x \land y \lor EX(x \land y)$, $x \land y \lor EX(x \land y \lor EX(x \land y))$, ... If we do the EX computations, we get:

False,
$$x \land y$$
, $x \land y \lor \neg x \land y \lor x \land \neg y$,True0123

 $\begin{aligned} \mathsf{EF}(x \land y) &\equiv \mathsf{True} \\ \text{In other words } \mathsf{EF}(\{(\mathsf{T},\mathsf{T})\}) &\equiv \{(\mathsf{F},\mathsf{F}),(\mathsf{F},\mathsf{T}),\,(\mathsf{T},\mathsf{F}),(\mathsf{T},\mathsf{T})\} \end{aligned}$

- Based on our results, for extremely simple transition system
 T = (S, I, R) we have
- lf

 $I \subseteq EF(x \land y)$ (\subseteq corresponds to implication) hence: $T \models EF(x \land y)$

(i.e., there exists a path from each initial state where eventually x and y both become true in the same state)If

$$I \not\subseteq EX(x \land y)$$
 hence:
 $T \not\models EX(x \land y)$

(i.e., there does not exist a path from each initial state where in the next state x and y both become true)

- Let's try one more property $AF(x \land y)$
- To check this property we first convert it to a formula which uses only the temporal operators in our basis:
 AF(x ∧ y) ≡ ¬ EG(¬(x ∧ y))

i.e.,

if we can find an initial state which satisfies $EG(\neg(x \land y))$, then we know that the transition system *T* does not satisfy the property $AF(x \land y)$

Let's compute $EG(\neg(x \land y))$

The fixpoint sequence is:

True,
$$\neg x \lor \neg y$$
, $(\neg x \lor \neg y) \land \mathsf{EX}(\neg x \lor \neg y)$, ...

If we do the EX computations, we get:

$$\underbrace{\begin{array}{ccc} \text{True,} \\ 0 \end{array}}_{0} \underbrace{\begin{array}{ccc} \neg x \lor \neg y, \\ 1 \end{array}}_{2} \underbrace{\begin{array}{ccc} \neg x \lor \neg y, \\ 2 \end{array}}_{2}$$

 $EG(\neg(x \land y)) \equiv \neg x \lor \neg y$ Since $I \cap EG(\neg(x \land y)) \neq \emptyset$ we conclude that $T \not\models AF(x \land y)$

F,F

F,T

T,F

Symbolic CTL Model Checking Algorithm (in general)

- Translate the formula to a formula which uses the basis
 EX \u03c6, EG \u03c6, \u03c6 EU \u03c6
- Atomic formulas can be interpreted directly on the state representation
- For EX *\varphi* compute the pre-image using existential variable elimination as we discussed
- For EG and EU compute the fixpoints iteratively

Symbolic Model Checking Algorithm

Check(*f* : CTL formula) : boolean logic formula (here we use logic encoding of sets of states)

return <i>f</i> ;
return –Check(ϕ);
return Check($arphi$) \wedge Check($arphi$);
return Check($arphi$) \lor Check($arphi$);
return $\exists V' R \land Check(\phi) [V'/V]$

Symbolic Model Checking Algorithm

Check(f)

```
. . .
case: f \equiv EG \phi
    Y := True;
    P := Check (\boldsymbol{\varphi});
    Y' := P \land Check(EX(Y));
    while (Y \neq Y')
    {
           Y := Y';
           Y' := P \land Check(EX(Y));
    }
    return Y;
```


Check(f) case: $f \equiv \varphi EU\psi$ Y := False; P := Check $(\boldsymbol{\varphi})$; Q := Check $(\boldsymbol{\psi})$; $Y' := Q \vee [P \land Check(EX(Y))];$ while $(Y \neq Y')$ { Y := Y'; $Y' := Q \vee [P \wedge Check(EX(Y))];$ } return Y;

Symbolic Model Checking Algorithm

. . .

Binary Decision Diagrams (BDDs)

- Binary Decision Diagrams (BDDs)
 - An efficient data structure for boolean formula manipulation.
 - There are BDD packages available, e.g. CUDD from Colorado University <u>http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html</u>
- BDD data structure can be used to implement the symbolic model checking algorithms discussed above.
- BDDs are *canonical representation* for boolean logic formulas, i.e.
 - given formulas *F* and *G*, they are $F \Leftrightarrow G$ if their BDD representations will be identical.

Binary Decision Trees (BDT)

Fix a variable order, in each level of the tree branch one value of the variable in that level.

 Examples of BDT-s for boolean formulas on two variables: Variable order: x, y

Transforming BDT to BDD

- Repeatedly apply the following transformations to a BDT:
 - Remove duplicate terminals &

redraw connections to remaining terminals that have same name as deleted ones

- Remove duplicate non-terminals & ...
- Remove redundant tests
- These transformations transform the tree to a directed acyclic graph binary decision diagram (BDD).

Binary Decision Trees vs. BDDs

Good News About BDDs

- Given BDDs for two boolean logic formulas F and G,
 - the BDDs for $F \wedge G~$ and $F \vee G$ are of size $|F| \times |G|$ (and can be computed in that time)
 - the BDD for $\neg F$ is of size |F| (and can be computed in that time)
 - Equivalence $F \equiv ?$ G can be checked in constant time
 - Satisfiability of F can be checked in constant time
 - But, this does not mean that one can solve SAT in constant time (it is <u>NP-complete</u> problem).

Bad News About BDDs

- The size of a BDD can be exponential in the number of boolean variables
- The sizes of the BDDs are very <u>sensitive to the ordering of variables</u>. Bad variable ordering can cause exponential increase in the size of the BDD
- There are functions which have BDDs that are exponential for any variable ordering (for example binary multiplication)
- Pre-condition computation requires existential variable elimination
 - Existential variable elimination can cause an exponential blow-up in the size of the BDD

BDDs are Sensitive to Variable Ordering

Identity relation for two variables: $(x' \leftrightarrow x) \land (y' \leftrightarrow y)$

Variable order: x, x', y, y'

For *n* variables, 3n+2 nodes

Variable order: x, y, x', y'

For *n* variables, $3 \times 2^n - 1$ nodes

What About LTL and CTL* Model Checking?

- The complexity of the model checking problem for LTL and CTL* is:
 - $-(|S|+|R|) \times 2^{O(|f|)}$

where | f | is the number of logic connectives in f

- Typically the size of the formula is much smaller than the size of the transition system
 - So the exponential complexity in the size of the formula is not very significant in practice
- LTL properties are intuitive and easy to write correctly

– XF φ and FX φ are equivalent in LTL

– AXAF φ and AFAX φ are not equivalent in CTL