
Model Checking  
 

CTL model checking algorithms 

Many slides from Tevfik Bultan 



Recall: Linear Time vs. Branching Time 

• In linear time logics we look at execution paths individually 

• In branching time logics we view the computation 

alternatives as a tree 

– computation tree unrolls the transition relation 
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Recall: Computation Tree Logic (CTL) 

• In CTL we quantify over the paths in the computation tree 

 

• We use the same temporal operators as in LTL: X, G, F, U 

 

• We attach path quantifiers to these temporal operators: 

– A : for all paths 

– E : there exists a path 

 

• We end up with eight temporal operator pairs: 

– AX, EX, AG, EG, AF, EF, AU, EU 



Examples 

 

EX  (exists next) 

 

AX (all next) 

 

 

 

 

 

EG (exists global) 

 

 

   

     

AG (all global) 

 



Examples (continued) 

 

EF (exists future) 

 

  

AF (all future) 

 

 

 

 

 EU   (exists until) 

 

 

  

 

 AU   (all until) 

 



Automated Verification of Finite State Systems  
[Clarke and Emerson 81], [Queille and Sifakis 82] 

• CTL Model checking problem:  

 Given a transition system T = (S, I, R), and a CTL formula , 

does the transition system T satisfy the property ? 

 

 CTL model checking problem can be solved in  

 

 

Note:  

– the complexity is linear in the size of the transition 

system T 

– the complexity is exponential in the number of variables 

of  and S in the number of concurrent components of T 

  This is called the state space explosion problem. 

O(| |  (|S|+|R|)) 



• Translate the formula to a formula which uses only the basis  
 

       EX ,   EG ,    EU  

 

• Key idea of the CTL model checking algorithms:  

    M,s0 |= p? 
 

– Initially, the states S are labeled with atomic propositions from set AP. 

– Label the states of M with subformulas of p that hold in these states 

(start from the innermost non-atomic subformulas of p).  

– Each (temporal or boolean) operator has to be processed only once. 

– Graph traversal algorithms (DFS or BFS) are used to find the labeling 

for each operator. 
 

• Computation of each sub-formula takes O(|S|+|R|).  

CTL Model Checking Algorithm 



• EX   is easy to do in O(|S|+|R|) 

– All the nodes which have a next state labeled with  should be 

labeled with EX  

 

•  EU : Find the states which are the initial states of a path where  U  

holds 

Equivalently,  

– find the nodes which reach  labeled node by a path where each 

node is labeled with  

– Label such nodes with  EU 

It is a reachability problem which can be solved in O(|S|+|R|) 

 

CTL Model Checking Algorithms: intuition 



CTL Model Checking Algorithms: intuition 

   EG  :  
 

Find paths where each node is labeled with  and label nodes in such 

paths with EG  : 

– First remove all the states which do not satisfy  from the transition 

graph 

– Compute the connected components of the remaining graph and 

then find the nodes which can reach the connected components 

(both of which can be done in O(|S|+|R|) 

– Label the nodes with EG  in the connected components and the 

nodes that can reach the connected components. 



Verification vs. Falsification 

• Verification:  

– Show that initial states  truth set of  

 

• Falsification: 

– Find if a state  (initial states  truth set of ) 

– Generate a counter-example starting from that state 
 

• CTL model checking algorithm can also generate a counter-example 

path (if the property is not satisfied) without increasing the complexity 
 

• The ability to find counter-examples is one of the biggest strengths of 

model checkers 



Problems with the previous algorithm 

 

It is named  explicit state model checking 

 

• All the states and labels associated to the states must be 

recorded when doing states traversal 

– needs a lot of memory 

– causes exponential explosion of required memory 

•  the number of states |S| in the transition graph T is 

exponential in the number of variables and concurrent 

processes in the system modelled with LTS. 

 

LTS – Labeled Transition System 



Inroduction to symbolic state model checking 

 

• How to deal with exponential explosion of the memory 

space for CTL model checking??? 



Characterization of Temporal operators as Fixpoints  
[Emerson & Clarke 80]: Think about temporal op-s as recursive functions on sets 

Here are some interesting CTL equivalences (for a state of computation tree) 

 

AG  =   AX AG  

EG  =   EX EG  

 

AF   =   AX AF  

EF   =   EX EF  

 

 AU  =   (  AX ( AU)) 

 EU  =   (  EX ( EU)) 

 
Note:  

 We “unfold” the property by rewriting the CTL temporal operators using 
op-s themselves and EX and AX operators. 

function 
argument 

value 



Functionals (mapping of an arbitrary set into a set ) 

• Given a transition system T=(S, I, R), we will define functions from sets 

of states to sets of states  

– f : 2S  2S   2S – set of subsets of S 

 

• For example, one such function is the EX operator (which computes the 

“pre-image” of a set of states given a relation R) 

– EX : 2S  2S 

which can be defined as: 

EX( ) = { s | (s, s’)  R and s’   } 
 

Abuse of notation:  

 Generally, [| |] denotes the set of states which satisfy the property , 

i.e., the truth set of . Here we use just  in the same sense. 



Functionals 

• Now, we can think of all temporal operators also as 

functionals from sets of states to sets of states 
 

• For example,  

in logic notation: 

AX  = EX( ) 

or if we use set notation 

AX  = (S - EX(S - ))  

 

Abuse of notation: we will use the set  

and logic notations interchangeably.  

   

Logic   Set 

false    

true  S 

         S –  

            

          

  



Based on the equivalence EF  =   EX EF   

we observe that EF  is a fixpoint of the following function: 

  f y =   EX y, where y = EF  

  i.e., f y = y 

In fact, EF  is the least fixpoint of f, which is written as: 

 

 EF  =  y .   EX y 

 

 

Temporal Properties as Fixpoints (1) 

function 
argument 

Value of the argument 
that is fp 



EF Fixpoint Computation 

•  •  •  

EF()  states from where  is reachable      EX()    EX(EX())   ...  
  

  
EF() 



Temporal Properties as Fixpoints (2) 

Based on the equivalence EG  =   EX EG  

we observe that EG  is a fixpoint of the following function: 

  f y =   EX y, 

 i.e., f (EG ) = EG  

In fact, EG  is the greatest fixpoint of f, which is written as: 

 

 EG  =  y .   EX y 

 function 
argument 

Value of argument 
that is FP 



EG Fixpoint Computation 

•  •  • EG() 

  

EG()  “states that can avoid reaching  ”     EX()  EX(EX())  ... 



-Calculus 

-Calculus is a temporal logic which consist of : 

• Atomic properties AP 

• Boolean connectives:  ,  ,   
• Pre-image operator: EX 

• Least and greatest fixpoint operators:  y. F y and  y. F y  

 

Any CTL* formula can be expressed in -calculus  

 

 



Symbolic Model Checking 
[McMillan et al. LICS 90]  

• Represent sets of states S and the transition relation R as 

Boolean logic formulas 

 

• Fixpoint computation becomes formula manipulation, i.e. 

– pre-condition (EX) computation:  
including existentially bound variable elimination 

– conjunction (intersection), disjunction (union) and 

negation (set difference), and equivalence check 

 

• Use an efficient data structure for boolean logic formulas  

– Binary Decision Diagrams (BDDs) 



Example: Mutual Exclusion Protocol 

Process 1: 

while (true) { 

   out:  a := true; turn := true; 

   wait: await (b = false or turn = false); 

   cs:   a := false; 

} 

|| 

Process 2: 

while (true) { 

   out:  b := true; turn := false; 

   wait: await (a = false or turn); 

   cs:   b := false; 

} 

Two concurrently executing processes are trying to enter their 

critical section without violating mutual exclusion condition 



Encoding State Space S 

• Encode the state space using only boolean variables 

 

• Two program counter variables: pc1, pc2 

with domains {out, wait, cs}  

– We need two boolean variables per program counter to 
encode their 3 values: 

pc10, pc11, pc20, pc21  . 

– Encoding:  

 pc10  pc11    pc1 = out 

 pc10  pc11     pc1 = wait 

    pc10  pc11     pc1 = cs 

  

• The other three variables are already booleans: turn, a , b 



Encoding State Space S 

• Each state can be written as a tuple: 

  (pc10, pc11, pc20, pc21, turn, a, b) 

– After encoding:   

(o,o,F,F,F)becomes (F,F,F,F,F,F,F)  

(o,c,F,T,F)becomes (F,F,T,T,F,T,F)  

 

• We can use boolean logic formulas on the variables 

pc10,pc11,pc20,pc21,turn,a,b to represent sets of states: 

{(F,F,F,F,F,F,F)}  pc10   pc11  pc20   pc21   turn  a  b 

{(F,F,T,T,F,F,T)}  pc10   pc11  pc20  pc21   turn  a  b 

 

{(F,F,F,F,F,F,F), (F,F,T,T,F,F,T)}  pc10   pc11  pc20   pc21   

turn  a  b  pc10   pc11  pc20  pc21   turn  a  b 

 pc10   pc11   turn  b  (pc20  pc21  b) 



Encoding Initial States 

• We can write the initial states as a boolean logic formula 

– recall that, initially: pc1=o and pc2=o but other 

variables may have any value in their domain 

 

I  {(o,o,F,F,F), (o,o,F,F,T), (o,o,F,T,F), 

(o,o,F,T,T), (o,o,T,F,F), (o,o,T,F,T), 

(o,o,T,T,F), (o,o,T,T,T)}  

 pc10   pc11  pc20   pc21  

 

 meaning that 

  pc1 and pc2 are set to false and other variables may have 

arbitrary boolean values 



Encoding the Transition Relation 

• We can use boolean logic formulas and primed variables to 

encode the transition relation R. 

• We will use two sets of variables: 

– Current state variables: pc10,pc11,pc20,pc21,turn,a,b 

– Next state variables: pc10’,pc11’,pc20’,pc21’,turn’,a’,b’ 

 

• For example, we can write a boolean logic formula for the 
statement of process 1: 

cs:   a := false;  

as follows 

pc10  pc11  pc10’  pc11’  a’  

(pc20’pc20) (pc21’pc21)(turn’turn)(b’b) 

– Call this formula R1c 



Encoding the Transition Relation 

• Similarly we can write a formula Rij for each statement in 

the program 

 

• Then the overall transition relation is 

R  R1o  R1w  R1c  R2o  R2w  R2c 

 

 

 

But how to interprete temporal operators of p on symbolic 

representation of M?? 

 

 

 



Symbolic Pre-condition Computation 

• Recall the pre-image function 

EX : 2S  2S 

which is defined as: 

EX() = { s | (s,s’)  R and s’  [| |]} 

• We can symbolically compute pre as follows 

EX()  V’ (R   [V’ / V]) 

– V : values of boolean variables in the current-state  

– V’ : values of boolean variables in the next-state  

–  [V’ / V] : rename variables in  by replacing current-state variables 

with the corresponding next-state variables 

– V’ f: existentially quantify out all the variables in V’ from f  



Renaming 

• Assume that we have two variables x, y.  

• Then, V = {x, y} and V’={x’, y’} 

 

• Renaming example: 

     Given   x  y : 

[V’ / V]    x  y [V’ / V]    x’  y’ 

 

 



Existential Quantifier Elimination 

• Given a boolean formula f and a single variable v 

v f  f [true/v]  f [false/v] 

i.e., to existentially quantify out a variable, first set it to true then set it 
to false and then take the disjunction of the two results. 

 

• Example:  f   x  y  x’  y’  

 V’ f    x’ ( y’ (x  y  x’  y’) ) 

 x’ ((x  y  x’  y’ )[true/y’]  (x  y  x’  y’ )[false/y’]) 

 x’ (x  y  x’  true  x  y  x’  false ) 

 x’( x  y  x’ ) 

 (x  y  x’)[true/x’]  (x  y  x’)[false/x’])  

 x  y  true  x  y  false 

 x  y  



An Extremely Simple Example 

Variables: x, y: boolean 

 

Set of states: 

S = {(F,F), (F,T), (T,F), (T,T)} 

S  true 

 

Initial condition: 

I   x   y 

 

Transition relation (negates one variable at a time): 

R  x’=x  y’=y  x’=x  y’=y    (= means ) 

 

 

F,T 

F,F 

T,T 

T,F 



An Extremely Simple Example 

Given    x  y, compute EX() 

 

EX()  V’ R  [V’ / V] 

 V’ R  x’  y’ 

 V’ (x’=x  y’=y  x’=x  y’=y )  x’  y’ 

 V’ (x’=x  y’=y)  x’  y’  (x’=x  y’=y)  x’  y’ 

 V’ x  y  x’  y’  x  y  x’  y’ 

 x  y  x  y 

 

EX(x  y)  x  y  x  y 

In other words EX({(T,T)})  {(F,T), (T,F)} 

 

F,T 

F,F 

T,T 

T,F 

| by distr 

| by   

| by substit  

| by  -elimination  



An Extremely Simple Example 

 

Let’s compute EF(x  y) 

 

 

The fixpoint sequence is 

False,   xy ,   xy  EX(xy) ,   xy  EX (xy  EX(xy) ) , ... 

If we do the EX computations, we get: 

False,     x  y ,     x  y  x  y  x  y,       True 

 

 

EF(x  y)  True 

In other words EF({(T,T)})  {(F,F),(F,T), (T,F),(T,T)} 

 

F,T 

F,F 

T,T 

T,F 

0 1 2 3 

1 

2 

3 



An Extremely Simple Example 

• Based on our results, for extremely simple transition system 

T = (S, I, R) we have 

If 

I  EF(x  y)  ( corresponds to implication) hence:  

T |= EF(x  y)  

(i.e., there exists a path from each initial state where 

eventually x and y both become true in the same state) 

If 

I  EX(x  y)  hence: 

T |= EX(x  y)  

(i.e., there does not exist a path from each initial state where 

in the next state x and y both become true) 

 



An Extremely Simple Example 

• Let’s try one more property AF(x  y) 

 

• To check this property we first convert it to a formula which 

uses only the temporal operators in our basis: 

  AF(x  y)   EG((x  y)) 

i.e., 

 if we can find an initial state which satisfies EG((x  y)), 

then we know that the transition system T does not satisfy 

the property AF(x  y) 

 



An Extremely Simple Example 

Let’s compute EG((x  y)) 

 

 

The fixpoint sequence is: 

True,     x  y,     (x  y)  EX(x  y) , …  

 

If we do the EX computations, we get: 

True,     x  y,      x  y,  

 

 

EG((x  y))  x  y 

Since I  EG((x  y))   we conclude that T |= AF(x  y)  

 

F,T 

F,F 

T,T 

T,F 

0 1 2 

0 

1 



Symbolic CTL Model Checking Algorithm (in general) 

• Translate the formula to a formula which uses the basis  

– EX , EG ,  EU 

 

• Atomic formulas can be interpreted directly on the state representation 

 

• For EX  compute the pre-image using existential variable elimination 

as we discussed 

 

• For EG and EU compute the fixpoints iteratively 



Symbolic Model Checking Algorithm 

Check(f : CTL formula) : boolean logic formula 

(here we use logic encoding of sets of states) 

 case: f  AP  return f; 

 case: f      return Check(); 

 case: f      return Check()  Check(); 

 case: f      return Check()  Check(); 

 case: f  EX   return V’R  Check()[V’/V];

  

  



Symbolic Model Checking Algorithm 

Check(f)  

   … 

 case: f  EG    

  Y := True;  

  P := Check(); 

  Y’ := P  Check(EX(Y)); 

  while (Y  Y’)  

  {  

   Y  := Y’;  

   Y’ := P  Check(EX(Y));  

  } 

  return Y; 

 



Symbolic Model Checking Algorithm 

Check(f)  

   … 

 case: f   EU   

  Y := False;  

  P := Check();  

  Q := Check(); 

  Y’ := Q  [P  Check(EX(Y))]; 

  while (Y  Y’)  

  {  

   Y := Y’;  

   Y’:= Q  [P  Check(EX(Y))]; 

  } 

  return Y; 



Binary Decision Diagrams (BDDs) 

• Binary Decision Diagrams (BDDs) 

– An efficient data structure for boolean formula manipulation. 

– There are BDD packages available, e.g. CUDD from Colorado 

University http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html 
 

• BDD data structure can be used to implement the symbolic model 

checking algorithms discussed above. 
 

• BDDs are  canonical representation for boolean logic formulas, i.e. 

– given formulas F and G, they are F  G  if their BDD 

representations will be identical. 



Binary Decision Trees (BDT) 

Fix a variable order, in each level of the tree branch one value 

of the variable in that level. 

 

• Examples of BDT-s for boolean formulas on two variables: 

Variable order: x, y  
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Transforming BDT to  BDD 

• Repeatedly apply the following transformations to a BDT: 

– Remove duplicate terminals &  

 redraw connections to remaining terminals that have same name as 

deleted ones 

– Remove duplicate non-terminals & ... 

– Remove redundant tests 

 

• These transformations transform the tree to a directed acyclic graph – 

binary decision diagram (BDD). 

 



Binary Decision Trees vs. BDDs 

F 

F 

F 

T 

T 

T 

x 

y y 

T 

F T 

T 

x  y 

F 

F 

F 

T 

T 

F 

x 

y y 

F 

F T 

T 

x  y 

F 

F 

F 

T 

T 

F 

x 

y y 

T 

F T 

T 

x 

F 

F 

F 

T 

T 

F 

x 

y y 

F 

F T 

F 

False 

F 

F 

F 

T 

T 

T 

x 

y 

F 

F 

F 

T 

T 

T 

x 

y 
F 

F T 

T 

x F 

- redundant node 



Good News About BDDs 

• Given BDDs for two boolean logic formulas F and G, 

 

– the BDDs for F  G  and F  G are of size |F|  |G| (and 

can be computed in that time) 

 

– the BDD for F is of size |F| (and can be computed in 

that time) 

 

– Equivalence F ? G can be checked in constant time 

 

– Satisfiability of F can be checked in constant time 

• But, this does not mean that one can solve SAT in 

constant time (it is NP-complete problem). 

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete


Bad News About BDDs 

• The size of a BDD can be exponential in the number of boolean 
variables 

 

• The sizes of the BDDs are very sensitive to the ordering of variables. 
Bad variable ordering can cause exponential increase in the size of the 
BDD 

 

• There are functions which have BDDs that are exponential for any 
variable ordering (for example binary multiplication) 

  

• Pre-condition computation requires existential variable elimination 

– Existential variable elimination can cause an exponential blow-up in 
the size of the BDD 



BDDs are Sensitive to Variable Ordering 

Identity relation for two variables: (x’  x)  (y'  y) 
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For n variables, 3n+2 nodes 
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What About LTL and CTL* Model Checking? 

• The complexity of the model checking problem for LTL and 

CTL*  is:  

– (|S|+|R|)  2O(|f|)  

where | f | is the number of logic connectives in f 

• Typically the size of the formula is much smaller than the 

size of the transition system  

– So the exponential complexity in the size of the formula 

is not very significant in practice 

 

• LTL properties are intuitive and easy to write correctly 

– XF   and FX   are equivalent in LTL 

– AXAF   and AFAX  are not equivalent in CTL 


