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Probability Theory

Sample Space and Events

Ω-sample space, that contains all possible outcomes ω ∈ Ω.

For example, Ω = {heads, tails} for a coin, and Ω = {1, . . . , 6} for a die.

Events are subsets A ⊆ Ω.

For a die, the event {2, 4, 6} means that the outcome is even.
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Probability Theory

When do Events Happen?

An event A happens if ω ∈ A for the actual outcome ω.

Empty event ∅ is called the impossible event (it never happens)

Ω is called the universal event (it always happens)
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Probability Theory

Operations with Events

For every two events A and B we can compute:

Intersection A and B A ∩B = {ω ∈ Ω: ω ∈ A and ω ∈ B}
Union A or B A ∪B = {ω ∈ Ω: ω ∈ A or ω ∈ B}
Difference A but not B A\B = {ω ∈ Ω: ω ∈ A and ω 6∈ B}
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Probability Theory

Relations Between Events

Inclusion: Event A implies event A, if A ⊆ B, i.e. if ω ∈ A always implies
ω ∈ B. If A happens then B happens.

Exclusion: Events A and B are mutually exclusive if A ∩B = ∅, i.e. A
and B cannot simultaneously happen.
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Probability Theory

Some Properties

Theorem (1)

A = (A\B) ∪ (A ∩B)

Proof.

We prove (a) A ⊆ (A\B) ∪ (A ∩B) and (b) (A\B) ∪ (A ∩B) ⊆ A

(a) If ω ∈ A then either:

◦ ω ∈ B, which implies ω ∈ A ∩B, or

◦ ω 6∈ B, which implies ω ∈ A\B

(b) If ω ∈ (A\B) ∪ (A ∩B), then either:

◦ ω ∈ A\B, which implies ω ∈ A, or

◦ ω ∈ A ∩B, which also implies ω ∈ A
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Probability Theory

Some Properties

Theorem (2)

A ∪B = (A\B) ∪B

Proof.

We prove (a) A ∪B ⊆ (A\B) ∪B and (b) (A\B) ∪B ⊆ A ∪B

(a) If ω ∈ A ∪B, then either:

◦ ω ∈ B or

◦ ω 6∈ B and ω ∈ A, which implies ω ∈ A\B.

(b) If ω ∈ (A\B) ∪B then either:

◦ ω ∈ B or

◦ ω ∈ A\B that implies ω ∈ A.
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Probability Theory

Event Algebra

The set F of all events we consider must be a sigma-algebra:

Ω ∈ F

If A ∈ F, then Ω\A ∈ F
If A1, A2, A3, . . . ∈ F, then A1 ∪A2 ∪A3 ∪ . . . ∈ F

If A ∈ F, then A is said to be a measurable subset.

Example: The set P (Ω) of all subsets of Ω is a sigma-algebra.

In this class, we mostly assume that F = P (Ω).
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Probability Theory

Probability Measure

Probability (measure) is a function P : F → R such that:

◦ PM1: 0 ≤ P[A] ≤ 1 for any event A ∈ F.

◦ PM2: P[Ω] = 1

◦ PM3: If A1, A2, . . . ∈ F are mutually exclusive, then

P[A1 ∪A2 ∪ . . .] = P[A1] + P[A2] + . . .

The triple (Ω,F,P) is called a probability space.

If F is the set of all subsets of Ω, we omit F and say that a probability
space is a pair (Ω,P).
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Probability Theory

Some Implications

Theorem

P[Ω\A] = 1− P[A]

Proof.

By PM2, we have P[Ω] = 1. As A and Ω\A are mutually exclusive, and
(Ω\A) ∪A = Ω, by PM3, we have P[Ω\A] + P[A] = P[Ω] = 1 and hence

P[Ω\A] = P[Ω\A] + P[A]︸ ︷︷ ︸
1

−P[A] = 1− P[A] .
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Probability Theory

Some Implications

Theorem

P[A] + P[B] = P[A ∩B] + P[A ∪B]

Proof.

By Thm. 1: A = (A\B) ∪ (A ∩B). As A\B and A ∩B are mutually
exclusive, by PM3: P[A] = P[A\B] + P[A ∩B]. Hence,

P[A] + P[B] = P[A\B] + P[B] + P[A ∩B]

By Thm. 2: A ∪B = (A\B) ∪B. As A\B and B are mutually exclusive,
by PM3: P[A ∪B] = P[A\B] + P[B]. Hence,

P[A] + P[B] = P[A\B] + P[B]︸ ︷︷ ︸
P[A∪B]

+ P[A ∩B] = P[A ∪B] + P[A ∩B] .
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Probability Theory

Learning

Somehow we learn that an event B (with P[B] 6= 0) happens, i.e. ω ∈ B.

Probability space (Ω,P) collapses to a new space (Ω′,P′), where Ω′ = B.

Magnify by β

We want that there is β, so that P′[A] = β · P[A ∩B] for any event A.

As in the new space, P′[B] = P′[Ω′] = 1, we have β = 1
P[B∩B] = 1

P[B] , i.e.

P
′[A] =

P[A ∩B]

P[B]
.
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Probability Theory

Conditional Probability

The probability

P
′[A] =

P[A ∩B]

P[B]

is denoted by P[A | B] and is called the conditional probability of A
assuming that B happens, i.e.

P[A | B] =
P[A ∩B]

P[B]

Corollary (Chain Rule):

P[A ∩B] = P[B] · P[A |B] = P[A] · P[B |A]
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Probability Theory

Random Variables

Random variable X is any function X : Ω→ R, where R is called the
range of X. We write RX to denote the range of X

For any x ∈ R, we define X−1(x) as the event {ω : X(ω) = x} and use
the notation:

P
X

[x] = P[X = x] = P[X−1(x)] .
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Probability Theory

Finite Range Random Variables

In cryptography, we mostly assume that the range R is finite.

Note that if x 6= x′, then the events X−1(x) and X−1(x′) are mutually
exclusive and as ∪x∈RX−1(x) = Ω, we have:∑

x

P
X

[x] = P[∪x∈RX−1(x)] = P[Ω] = 1 .
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Probability Theory

Probability Distributions and Histograms

Assume R is finite and R = {x1, x2, . . . , xn}.
The sequence of values (p1, p2, . . . , pn), where pi = P

X
[xi], is called the

probability distribution of X.

Histograms are graphical representations of probability distributions.
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Probability Theory

Independent Events and Random Variables

Events A and B are said to be independent if P[A ∩B] = P[A] · P[B]

If P[A] 6=0 6=P[B], then independence is equivalent to:

P[A | B] = P[A] and P[B | A] = P[B] ,

i.e. the probability of A does not change, if we learn that B happened.

We say that X and Y are independent random variables if for every
x ∈ RX and y ∈ RY :

P[X = x, Y = y] = P[X−1(x) ∩ Y −1(y)] = P[X−1(x)] · P[Y −1(y)]

= P[X = x] · P[Y = y] .

This means that the probability distribution of X does not change, if we
learn the value of Y , and vice versa
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Probability Theory

Direct Product of Random Variables

By the direct product XY (or (X,Y )) of random variables X and Y on a
probability space (Ω,P) is a random variable defined by

(XY )(ω) = (X(ω), Y (ω)) .
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Probability Theory

Factor Space

Let X be a random variable (with range R) on a probability space (Ω,P).

If we take Ω′ = R and define a probability function P
X

on R as follows:

P
X

[A] = P[X−1(A)]

where X−1(A) = {ω ∈ Ω: X(ω) ∈ A}, we get a probability space (R, P
X

)

that we call a factor space.
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Unbreakable Ciphers

Probabilistic Model of a Cipher

Plaintext X, key Z and ciphertext Y = EZ(X) are random variables on
(Ω,P).It is mostly assumed that X and Z are independent.

As we need only X, Y , and Z, we study the factor space (RXZ , PXZ)
that consists of all possible plaintext-key pairs (x, z), whereas

P
XZ

[x, z] = P[X = x] · P[Z = z] = p(x) · p(z)

X(x, z) = x, Z(x, z) = z, and Y (x, z) = Ez(x).
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Unbreakable Ciphers

Some Observations

p(y) = P
XZ

[Y = y] =
∑
x,z

P[x, z][Ez(x)=y]

=
∑
x

p(x)
∑
z

p(z)[Ez(x) = y]

p(x, y) = P
XZ

[X = x, Y = y] =
∑
z

P[x, z][Ez(x) = y]

= p(x)
∑
z

p(z)[Ez(x) = y]

Here, [A(x, yz)] is the so-called Iverson symbol:

[A(x, y, z)] =

{
1 if A(x, y, z) holds
0 otherwise
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Unbreakable Ciphers

Definition of Unbreakable Cipher

A cipher is unbreakable if ciphertext Y and plaintext X are independent.

Theorem

If Z is independent of X, Z is uniformly distributed and for every plaintext
x and for every ciphertext y there is a unique key z such that Ez(x) = y,
then the cipher is unbreakable.

Proof.

Due to the unique z, we have
∑

z p(z)[Ez(x) = y] = p(z), and thus

p(x | y) =
p(x, y)

p(y)
=

p(x)
∑

z p(z)[Ez(x) = y]∑
x p(x)

∑
z p(z)[Ez(x) = y]

=
p(x)p(z)

p(z)
∑

x p(x)

=
p(x)p(z)

p(z) · 1
= p(x)
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Unbreakable Ciphers

Shift Cipher in Unbreakable

Shift cipher: y = Ez(x) = x+ z mod m

For every x and y, there is one and only one z, such that Ez(x) = y:

z = y − x mod m .

Therefore, by the theorem above, shift cipher is unbreakable.
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Breaking Imperfect Ciphers

Redundancy of English

In case of 26-letter alphabet, a single letter contains log2 26 ≈ 4.7 bits of
information.

Random n-letter sequence contains 4.7n bits of information.

Meaningful english texts contain just about 1.5 bits of information per
letter.

There are 24.7n arbitrary n-letter sequences, 21.5n of them meaningful

The probability that a randomly chosen n-letter sequence is meaningful is:

µ =
21.5n

24.7n
= 2−3.2n .
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Breaking Imperfect Ciphers

Exchaustive Key Search

Given a ciphertext y

For all keys z, check if Dz(y) is a meaningful text

Success, if there is just one z for which Dz(y) is meaningful
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Breaking Imperfect Ciphers

Ideal Cipher Model

For every key z, the function Ez : X→ Y is a randomly chosen
one-to-one function

This implies that the decryption function Dz : Y → X is also a randomly
chosen one-to-one function

If z1 6= z2, then X1 = Dz1(y) and X2 = Dz2(y) are independent uniformly
distributed random variables

Ahto Buldas Theory of Unbreakable Ciphers September 25, 2018 26 / 28



Breaking Imperfect Ciphers

Unicity Distance

Unicity distance: message length n0 for which the plaintext can be derived
from the ciphertext via exchaustive key search

Let y be a ciphertext

Assume there are 2k possible keys z, one of which is the right key

The probability that Dz(y) is meaningful for a fixed wrong key z is
µ = 2−3.2n

The probability that Dz(y) is meaningful for any of the wrong keys is
bounded by (2k − 1)µ and also by 2kµ = 2k−3.2n

If n > n0 = k
3.2 , the success probability of exchaustive search increases

rapidly
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Breaking Imperfect Ciphers

Unicity Distance for Substitution Ciphers

The number of keys is 26!

Hence, k = log2(26!) ≈ 88.4

Therefore, the unicity distance is n0 = 88.4/3.2 ≈ 28
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