# Theory of Unbreakable Ciphers 

Ahto Buldas

September 25, 2018

## Sample Space and Events

$\Omega$-sample space, that contains all possible outcomes $\omega \in \Omega$.


For example, $\Omega=\{$ heads, tails $\}$ for a coin, and $\Omega=\{1, \ldots, 6\}$ for a die.
Events are subsets $A \subseteq \Omega$.
For a die, the event $\{2,4,6\}$ means that the outcome is even.

## When do Events Happen?

An event $A$ happens if $\omega \in A$ for the actual outcome $\omega$.


Empty event $\emptyset$ is called the impossible event (it never happens)
$\Omega$ is called the universal event (it always happens)

## Operations with Events

For every two events $A$ and $B$ we can compute:

| Intersection | $A$ and $B$ | $A \cap B=\{\omega \in \Omega: \omega \in A$ and $\omega \in B\}$ |
| :--- | :--- | :--- |
| Union | $A$ or $B$ | $A \cup B=\{\omega \in \Omega: \omega \in A$ or $\omega \in B\}$ |
| Difference | $A$ but not $B$ | $A \backslash B=\{\omega \in \Omega: \omega \in A$ and $\omega \notin B\}$ |



## Relations Between Events

Inclusion: Event $A$ implies event $A$, if $A \subseteq B$, i.e. if $\omega \in A$ always implies $\omega \in B$. If $A$ happens then $B$ happens.

Exclusion: Events $A$ and $B$ are mutually exclusive if $A \cap B=\emptyset$, i.e. $A$ and $B$ cannot simultaneously happen.


## Some Properties

Theorem (1)
$A=(A \backslash B) \cup(A \cap B)$

Proof.
We prove (a) $A \subseteq(A \backslash B) \cup(A \cap B)$ and (b) $(A \backslash B) \cup(A \cap B) \subseteq A$
(a) If $\omega \in A$ then either:

- $\omega \in B$, which implies $\omega \in A \cap B$, or
- $\omega \notin B$, which implies $\omega \in A \backslash B$
(b) If $\omega \in(A \backslash B) \cup(A \cap B)$, then either:
- $\omega \in A \backslash B$, which implies $\omega \in A$, or
- $\omega \in A \cap B$, which also implies $\omega \in A$


## Some Properties

Theorem (2)
$A \cup B=(A \backslash B) \cup B$
Proof.
We prove (a) $A \cup B \subseteq(A \backslash B) \cup B$ and (b) $(A \backslash B) \cup B \subseteq A \cup B$
(a) If $\omega \in A \cup B$, then either:

- $\omega \in B$ or
- $\omega \notin B$ and $\omega \in A$, which implies $\omega \in A \backslash B$.
(b) If $\omega \in(A \backslash B) \cup B$ then either:
- $\omega \in B$ or
- $\omega \in A \backslash B$ that implies $\omega \in A$.


## Event Algebra

The set $\mathcal{F}$ of all events we consider must be a sigma-algebra:

- $\Omega \in \mathcal{F}$
- If $A \in \mathcal{F}$, then $\Omega \backslash A \in F$
- If $A_{1}, A_{2}, A_{3}, \ldots \in \mathcal{F}$, then $A_{1} \cup A_{2} \cup A_{3} \cup \ldots \in \mathcal{F}$

If $A \in \mathcal{F}$, then $A$ is said to be a measurable subset.
Example: The set $P(\Omega)$ of all subsets of $\Omega$ is a sigma-algebra.
In this class, we mostly assume that $\mathcal{F}=P(\Omega)$.

## Probability Measure

Probability (measure) is a function $\mathrm{P}: \mathcal{F} \rightarrow \mathbb{R}$ such that:

- PM1: $0 \leq \mathrm{P}[A] \leq 1$ for any event $A \in \mathcal{F}$.
- PM2: $\mathrm{P}[\Omega]=1$
- PM3: If $A_{1}, A_{2}, \ldots \in \mathcal{F}$ are mutually exclusive, then

$$
\mathrm{P}\left[A_{1} \cup A_{2} \cup \ldots\right]=\mathrm{P}\left[A_{1}\right]+\mathrm{P}\left[A_{2}\right]+\ldots
$$

The triple $(\Omega, \mathcal{F}, \mathrm{P})$ is called a probability space.
If $\mathcal{F}$ is the set of all subsets of $\Omega$, we omit $\mathcal{F}$ and say that a probability space is a pair $(\Omega, \mathrm{P})$.

## Some Implications

Theorem
$\mathrm{P}[\Omega \backslash A]=1-\mathrm{P}[A]$
Proof.
By PM2, we have $\mathrm{P}[\Omega]=1$. As $A$ and $\Omega \backslash A$ are mutually exclusive, and $(\Omega \backslash A) \cup A=\Omega$, by $P M 3$, we have $\mathrm{P}[\Omega \backslash A]+\mathrm{P}[A]=\mathrm{P}[\Omega]=1$ and hence

$$
\mathrm{P}[\Omega \backslash A]=\underbrace{\mathrm{P}[\Omega \backslash A]+\mathrm{P}[A]}_{1}-\mathrm{P}[A]=1-\mathrm{P}[A] .
$$

## Some Implications

## Theorem

$\mathrm{P}[A]+\mathrm{P}[B]=\mathrm{P}[A \cap B]+\mathrm{P}[A \cup B]$
Proof.
By Thm. 1: $A=(A \backslash B) \cup(A \cap B)$. As $A \backslash B$ and $A \cap B$ are mutually exclusive, by $P M 3$ : $\mathrm{P}[A]=\mathrm{P}[A \backslash B]+\mathrm{P}[A \cap B]$. Hence,

$$
\mathrm{P}[A]+\mathrm{P}[B]=\mathrm{P}[A \backslash B]+\mathrm{P}[B]+\mathrm{P}[A \cap B]
$$

By Thm. 2: $A \cup B=(A \backslash B) \cup B$. As $A \backslash B$ and $B$ are mutually exclusive, by $P M 3: \mathrm{P}[A \cup B]=\mathrm{P}[A \backslash B]+\mathrm{P}[B]$. Hence,

$$
\mathrm{P}[A]+\mathrm{P}[B]=\underbrace{\mathrm{P}[A \backslash B]+\mathrm{P}[B]}_{\mathrm{P}[A \cup B]}+\mathrm{P}[A \cap B]=\mathrm{P}[A \cup B]+\mathrm{P}[A \cap B] .
$$

## Learning

Somehow we learn that an event $B$ (with $\mathrm{P}[B] \neq 0$ ) happens, i.e. $\omega \in B$. Probability space $(\Omega, \mathrm{P})$ collapses to a new space $\left(\Omega^{\prime}, \mathrm{P}^{\prime}\right)$, where $\Omega^{\prime}=B$.


Magnify by $\beta$


We want that there is $\beta$, so that $\mathrm{P}^{\prime}[A]=\beta \cdot \mathrm{P}[A \cap B]$ for any event $A$. As in the new space, $\mathrm{P}^{\prime}[B]=\mathrm{P}^{\prime}\left[\Omega^{\prime}\right]=1$, we have $\beta=\frac{1}{\mathrm{P}[B \cap B]}=\frac{1}{\mathrm{P}[B]}$, i.e.

$$
\mathrm{P}^{\prime}[A]=\frac{\mathrm{P}[A \cap B]}{\mathrm{P}[B]} .
$$

## Conditional Probability

The probability

$$
\mathrm{P}^{\prime}[A]=\frac{\mathrm{P}[A \cap B]}{\mathrm{P}[B]}
$$

is denoted by $\mathrm{P}[A \mid B]$ and is called the conditional probability of $A$ assuming that $B$ happens, i.e.

$$
\mathrm{P}[A \mid B]=\frac{\mathrm{P}[A \cap B]}{\mathrm{P}[B]}
$$

Corollary (Chain Rule):

$$
\mathrm{P}[A \cap B]=\mathrm{P}[B] \cdot \mathrm{P}[A \mid B]=\mathrm{P}[A] \cdot \mathrm{P}[B \mid A]
$$

## Random Variables

Random variable $X$ is any function $X: \Omega \rightarrow R$, where $R$ is called the range of $X$. We write $R_{X}$ to denote the range of $X$
For any $x \in R$, we define $X^{-1}(x)$ as the event $\{\omega: X(\omega)=x\}$ and use the notation:

$$
\underset{X}{\mathrm{P}}[x]=\mathrm{P}[X=x]=\mathrm{P}\left[X^{-1}(x)\right] .
$$



## Finite Range Random Variables

In cryptography, we mostly assume that the range $R$ is finite.
Note that if $x \neq x^{\prime}$, then the events $X^{-1}(x)$ and $X^{-1}\left(x^{\prime}\right)$ are mutually exclusive and as $\cup_{x \in R} X^{-1}(x)=\Omega$, we have:

$$
\sum_{x} \mathrm{P}_{X}[x]=\mathrm{P}\left[\cup_{x \in R} X^{-1}(x)\right]=\mathrm{P}[\Omega]=1
$$

## Probability Distributions and Histograms

Assume $R$ is finite and $R=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
The sequence of values $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $p_{i}=\underset{X}{\mathrm{P}}\left[x_{i}\right]$, is called the probability distribution of $X$.


Histograms are graphical representations of probability distributions.


## Independent Events and Random Variables

Events $A$ and $B$ are said to be independent if $\mathrm{P}[A \cap B]=\mathrm{P}[A] \cdot \mathrm{P}[B]$ If $\mathrm{P}[A] \neq 0 \neq \mathrm{P}[B]$, then independence is equivalent to:

$$
\mathrm{P}[A \mid B]=\mathrm{P}[A] \quad \text { and } \quad \mathrm{P}[B \mid A]=\mathrm{P}[B]
$$

i.e. the probability of $A$ does not change, if we learn that $B$ happened.

We say that $X$ and $Y$ are independent random variables if for every $x \in R_{X}$ and $y \in R_{Y}$ :

$$
\begin{aligned}
\mathrm{P}[X=x, Y=y] & =\mathrm{P}\left[X^{-1}(x) \cap Y^{-1}(y)\right]=\mathrm{P}\left[X^{-1}(x)\right] \cdot \mathrm{P}\left[Y^{-1}(y)\right] \\
& =\mathrm{P}[X=x] \cdot \mathrm{P}[Y=y]
\end{aligned}
$$

This means that the probability distribution of $X$ does not change, if we learn the value of $Y$, and vice versa

## Direct Product of Random Variables

By the direct product $X Y$ (or $(X, Y)$ ) of random variables $X$ and $Y$ on a probability space $(\Omega, \mathrm{P})$ is a random variable defined by

$$
(X Y)(\omega)=(X(\omega), Y(\omega))
$$

## Factor Space

Let $X$ be a random variable (with range $R$ ) on a probability space ( $\Omega, \mathrm{P}$ ). If we take $\Omega^{\prime}=R$ and define a probability function ${\underset{X}{P}}^{\text {on }} R$ as follows:

$$
\underset{X}{\mathrm{P}}[A]=\mathrm{P}\left[X^{-1}(A)\right]
$$

where $X^{-1}(A)=\{\omega \in \Omega: X(\omega) \in A\}$, we get a probability space $\left(R,{\underset{X}{X}}^{\mathrm{P}^{\prime}}\right)$ that we call a factor space.


## Probabilistic Model of a Cipher

Plaintext $X$, key $Z$ and ciphertext $Y=E_{Z}(X)$ are random variables on $(\Omega, \mathrm{P})$.It is mostly assumed that $X$ and $Z$ are independent.

As we need only $X, Y$, and $Z$, we study the factor space $\left(R_{X Z}, P_{X Z}\right)$ that consists of all possible plaintext-key pairs $(x, z)$, whereas

$$
\underset{X Z}{\mathrm{P}}[x, z]=\mathrm{P}[X=x] \cdot \mathrm{P}[Z=z]=p(x) \cdot p(z)
$$

$X(x, z)=x, Z(x, z)=z$, and $Y(x, z)=E_{z}(x)$.

## Some Observations

$$
\begin{aligned}
p(y) & ={\underset{X Z}{\mathrm{P}}[Y=y]=\sum_{x, z} \mathrm{P}[x, z]\left[E_{z}(x)=y\right]}=\sum_{x} p(x) \sum_{z} p(z)\left[E_{z}(x)=y\right] \\
p(x, y) & =\underset{X Z}{\mathrm{P}}[X=x, Y=y]=\sum_{z} \mathrm{P}[x, z]\left[E_{z}(x)=y\right] \\
& =p(x) \sum_{z} p(z)\left[E_{z}(x)=y\right]
\end{aligned}
$$

Here, $[A(x, y z)]$ is the so-called Iverson symbol:

$$
[A(x, y, z)]= \begin{cases}1 & \text { if } A(x, y, z) \text { holds } \\ 0 & \text { otherwise }\end{cases}
$$

## Definition of Unbreakable Cipher

A cipher is unbreakable if ciphertext $Y$ and plaintext $X$ are independent.

## Theorem

If $Z$ is independent of $X, Z$ is uniformly distributed and for every plaintext $x$ and for every ciphertext $y$ there is a unique key $z$ such that $E_{z}(x)=y$, then the cipher is unbreakable.

## Proof.

Due to the unique $z$, we have $\sum_{z} p(z)\left[E_{z}(x)=y\right]=p(z)$, and thus

$$
\begin{aligned}
p(x \mid y) & =\frac{p(x, y)}{p(y)}=\frac{p(x) \sum_{z} p(z)\left[E_{z}(x)=y\right]}{\sum_{x} p(x) \sum_{z} p(z)\left[E_{z}(x)=y\right]}=\frac{p(x) p(z)}{p(z) \sum_{x} p(x)} \\
& =\frac{p(x) p(z)}{p(z) \cdot 1}=p(x)
\end{aligned}
$$

## Shift Cipher in Unbreakable

Shift cipher: $y=E_{z}(x)=x+z \bmod m$
For every $x$ and $y$, there is one and only one $z$, such that $E_{z}(x)=y$ :

$$
z=y-x \bmod m
$$

Therefore, by the theorem above, shift cipher is unbreakable.

## Redundancy of English

In case of 26 -letter alphabet, a single letter contains $\log _{2} 26 \approx 4.7$ bits of information.

Random $n$-letter sequence contains $4.7 n$ bits of information.
Meaningful english texts contain just about 1.5 bits of information per letter.

There are $2^{4.7 n}$ arbitrary $n$-letter sequences, $2^{1.5 n}$ of them meaningful The probability that a randomly chosen $n$-letter sequence is meaningful is:

$$
\mu=\frac{2^{1.5 n}}{2^{4.7 n}}=2^{-3.2 n}
$$

## Exchaustive Key Search

Given a ciphertext $y$
For all keys $z$, check if $D_{z}(y)$ is a meaningful text
Success, if there is just one $z$ for which $D_{z}(y)$ is meaningful

## Ideal Cipher Model

For every key $z$, the function $E_{z}: \mathbf{X} \rightarrow \mathbf{Y}$ is a randomly chosen one-to-one function

This implies that the decryption function $D_{z}: \mathbf{Y} \rightarrow \mathbf{X}$ is also a randomly chosen one-to-one function

If $z_{1} \neq z_{2}$, then $X_{1}=D_{z_{1}}(y)$ and $X_{2}=D_{z_{2}}(y)$ are independent uniformly distributed random variables

## Unicity Distance

Unicity distance: message length $n_{0}$ for which the plaintext can be derived from the ciphertext via exchaustive key search

Let $y$ be a ciphertext
Assume there are $2^{k}$ possible keys $z$, one of which is the right key
The probability that $D_{z}(y)$ is meaningful for a fixed wrong key $z$ is $\mu=2^{-3.2 n}$

The probability that $D_{z}(y)$ is meaningful for any of the wrong keys is bounded by $\left(2^{k}-1\right) \mu$ and also by $2^{k} \mu=2^{k-3.2 n}$
If $n>n_{0}=\frac{k}{3.2}$, the success probability of exchaustive search increases rapidly

## Unicity Distance for Substitution Ciphers

The number of keys is 26 !
Hence, $k=\log _{2}(26!) \approx 88.4$
Therefore, the unicity distance is $n_{0}=88.4 / 3.2 \approx 28$

