Theorem 1 (Korselt, 1899). A positive composite integer n is a Carmichael number iff

- n is square-free $-n$ is divisible by no perfect square other than 1
- for all prime factors p of n it holds that $p-1 \mid n-1$

From the theorem it follows that

1. Carmichael numbers are odd
2. Carmichael numbers are cyclic $-n$ and $\varphi(n)$ are co-prime
3. Carmichael numbers have at least 3 positive prime factors.

To see that the smallest Carmichael number $561=3 \cdot 11 \cdot 17$ satisfies the Korselt's criterion, observe that 561 is square-free and $2|560,10| 560$ and $16 \mid 560$.

In 1939, J. Chernick proved a theorem showing that the number $(6 k+1)(12 k+1)(18 k+1)$ is a Carmichael number if the three factors are all prime. In example, for $k=1$ we have $7 \cdot 13 \cdot 19=1729$ which is a Carmichael number.

How can we distinguish Carmichael numbers?

No Carmichael number is either an Euler-Jacobi pseudoprime or a strong pseudoprime to every base relatively prime to it. In theory, either the Euler-Jacobi test, or a strong primality test (i.e., Miller-Rabin) will prove the compositeness of the considered Carmichael number.

An odd integer n is called an Euler-Jacobi probable prime to base a if $\operatorname{gcd}(a, n)=1$ and

$$
a^{(n-1) / 2} \equiv\left(\frac{a}{n}\right) \quad(\bmod n),
$$

where $\left(\frac{a}{b}\right)$ is the Jacobi symbol. If n is an odd composite integer that satisfies the congruence, then it is called Euler-Jacobi pseudoprime. Solovay and Strassen have shown that for every composite n, at least $n / 2$ bases less than n, n is not an Euler-Jacobi pseudoprime.

For example, 561 is an Euler-Jacobi probable prime to base 50,

$$
50^{280} \bmod 561=1=\left(\frac{50}{561}\right),
$$

as well as to base 2

$$
2^{280} \bmod 561=1=\left(\frac{2}{561}\right)
$$

but not for base 11,

$$
11^{280} \bmod 561=220 \neq\left(\frac{12}{561}\right)
$$

Therefore, we have an evidence of the compositeness of 561 .
Exercise 1. Verify that the following Carmichael numbers satisfy the Korselt's criterion:

$$
\begin{array}{ll}
1105=5 \cdot 13 \cdot 17 & 1729=7 \cdot 13 \cdot 19 \\
2465=5 \cdot 17 \cdot 29 & 2821=7 \cdot 13 \cdot 31 \\
6601=7 \cdot 23 \cdot 41 & 8911=7 \cdot 19 \cdot 67
\end{array}
$$

Exercise 2. Test the following numbers for primality using Euler-Jacobi primality test.
1105
1729
2465
2821
6601
8911

Exercise 3. Apply the Miller-Rabin test and check if the following integers are strong probable primes.

1105	1729	2465	2821	6601	8911

