Data Mining: Lecture 3 Cluster Analysis

S. Nõmm

¹Department of Software Science, Tallinn University of Technology

19.09.2018

Introduction

Given a set of data points, partition them into groups with respect to chosen similarity criteria.

- Data summarization.
- Discover the structure of the set.
- Part of pre processing

Feature selection

Given a set of data points, partition them into groups with respect to chosen similarity criteria.

- Filter Models
 - Predictive Attribute Dependence
 - Entropy

$$E = -\sum_{i=1}^{m} \left[p_i \log(p_i) + (1 - p_i) \log(1 - p_i) \right]$$

Hopkins Statistic

$$H = \frac{\sum_{i=1}^{r} \beta_i}{\sum_{i=1}^{r} (\alpha_i + \beta_i)}.$$

• Wrapper models

Representative-Based Algorithms

- The *k*-Means Algorithm.
- The Kernel k-Means Algorithm
- The k-Medians Algorithm
- The *k*-Medoids Algorithm

The k-Means Algorithm

Let data set \mathcal{D} to be clustered into K clusters. Generate K centroids randomly. **Repeat**

- For Each point of \mathcal{D} computed distances to each of K centroids.
- The point is assigned the class label of the closest centroid.
- Update centroid coordinates for each class by computing the mean values.

Until converge.

Hierarchical Clustering Algorithms

- Bottom-Up Agglomerative Methods
- Top-Down Divisive Methods

Bottom-Up Agglomerative Methods

Initialize $n \times n$ distance matrix M Repeat

- Find the pair of closest clusters and merge them
- Update matrix M

Until termination criterion

Group-Based Statistics

- Best (single) linkage
- Worst (complete) linkage
- Group-average linkage
- Closest centroid
- Variance based criterion
- Ward's method

EM-algorithm

Let us consider K-Means from the probabilistic point of view.

- (E-step) Each data point of the set \mathcal{D} has a probability belonging to cluster j, which is proportional to the scaled and exponentiated Euclidean distance to each representative Y_j . In the k-means algorithm, this is done in a "hard" way, by choosing the smallest Euclidean distance to the representative of Y_j .
- (M-step) The center Y_j is the weighted mean over all the data points where the weight is defined by the probability of assignment to cluster j. The hard version of this is used in k-means, where each data point is either assigned to a cluster or not assigned to a cluster (i.e., 0-1 probabilities).

EM-algorithm

Assumption: the data was generated from a mixture of k distributions with probability distributions $\mathcal{G}_1 \dots \mathcal{G}_k$. Each distribution \mathcal{G}_i represents a cluster and is also referred to as a mixture component.

- (E-Step) Given the current value of the parameters in , estimate the posterior probability $P(\mathcal{G}_i|X_j,\Theta)$ of the component \mathcal{G}_i having been selected in the generative process, given that we have observed data point X_j . The quantity $P(\mathcal{G}_i|X_j,\Theta)$ is also the soft cluster assignment probability that we are trying to estimate. This step is executed for each data point X_j and mixture component G_i .
- (M-Step) Given the current probabilities of assignments of data points to clusters, use the maximum likelihood approach to determine the values of all the parameters in Θ that maximize the log-likelihood fit on the basis of current assignments.

One of the major problems with distance-based and probabilistic methods is that the shape of the underlying clusters is already defined implicitly by the underlying distance function or probability distribution. Possible solutions:

- Grid- based methods
- Density- based methods
- Graph- based algorithms
- Nonnegative matrix factorization

- Discretize each dimension of data \mathcal{D} into r ranges;
- Determine dense grid cells at a given density level;
- Create graph in which dense grids are connected if they are adjacent;
- Determine connected components of graph;
- return points in each connected component as a cluster;

Density-based methods

Definition

Data point is defined as a core point, if it contains at least τ data points.

Where τ is the density parameter.

Definition

A data point is defined as a **border point**, if it contains less than τ points, but it also contains at least one core point within the radius ε .

Definition

A data point that is neither a core point nor a border point is defined as a **noise point**.

DBSCAN

- Determine core, border and noise points of \mathcal{D} at level (ε, τ) ;
- Create graph in which core points are connected if they are within Eps of one another;
- Determine connected components in graph;
- Assign each border point to connected component with which it is best connected;
- Return points in each connected component as a cluster;

Cluster Validation

- Internal Cluster Validation
 - Sum of square distances to centroids;
 - Intracluster to intercluster distance ratio;
 - Silhouette coefficient;
 - Probabilistic measure;
- External Cluster Validation, used when ground truth information is available.
 - Confusion matrix;
 - Cluster purity;
 - Gini index;

Internal Validation Criteria

• Intracluster to Intercluster distance ratio:

$$S_{intra} = \sum_{(\bar{X}_i, \bar{X}_j) \in P} \frac{s(\bar{X}_i, \bar{X}_j)}{|P|}$$
$$S_{inter} = \sum_{(\bar{X}_i, \bar{X}_j) \in Q} \frac{s(\bar{X}_i, \bar{X}_j)}{|Q|}$$

where, P is the set of all point pairs of given cluster, Q is the set of all possible pairs where one point belong to the cluster and the other not, s is a distance function. Smaller values of S_{intra}/S_{inter} indicate better clustering behaviour.

• Silhouette coefficient:

$$S_i = \frac{D_{min_i}^{out} - D_{avg_i}^{in}}{max\{D_{min_i}^{out}, D_{avg_i}^{in}\}}$$

where, $D_{min_i}^{out}$ is the minimal distance to data points outside of the given cluster, and $D_{avg_i}^{in}$ is the average distance to the points within the given cluster. Larger positive values indicate highly separated clusters.

S. Nõmm (CS TUT)

Cluster Purity. NB! Not unsupervised any more!!!

- Let m_{ij} represent the number of data points from class (ground-truth cluster) i that are mapped to (algorithm determined) cluster j.
- Denote number of data points in true cluster *i* are by N_i, the number of data points in algorithm-determined cluster *j* by M_j.

$$N_i = \sum_{j=1}^{k_d} m_{ij}; \qquad M_j = \sum_{i=1}^{k_t} m_{ij};$$

- For a given algorithm-determined cluster *j*, the number of data points *P_j* in its dominant class is: *P_j* = max*m_{ij}*.
- Purity index is defined

$$P_a = \frac{\sum_{j=1}^{k_d} P_j}{\sum_{j=1}^{k_d} M_j}.$$

Gini index

• Gini index for algorithm determined cluster j is defined:

$$G_j = 1 - \sum_{i=1}^{k_t} \left(\frac{m_{ij}}{M_j}\right)^2.$$

• Average Gini index is defined as follows:

$$G = \frac{\sum_{j=1}^{k_d} G_j M_j}{\sum_{j=1}^{k_d} M_j}.$$