1. Find multiplicative modular inverse

$$
\begin{array}{ll}
2^{-1} \text { in } \mathbb{Z}_{7} & 4^{-1} \text { in } \mathbb{Z}_{11} \\
9^{-1} \text { in } \mathbb{Z}_{26} & 2^{-1} \text { in } \mathbb{Z}_{6}
\end{array}
$$

Solution.

2	7	a	b			11		a	b
					4	3		a	b-2a
2	1	$\begin{gathered} a \\ a-2(b-3 a)=7 a-2 b \end{gathered}$	$\begin{aligned} & \mathrm{b}-3 \mathrm{a} \\ & \mathrm{~b}-3 \mathrm{a} \end{aligned}$		1	3		$(\mathrm{b}-2 \mathrm{a})=3 \mathrm{a}-\mathrm{b}$	b-2a
0	1	$a-2(b-3 a)=7 a-2 b$			1	0		3a-b	$b-2 \mathrm{a}-3(3 \mathrm{a}-\mathrm{b})=-11 \mathrm{a}+4 \mathrm{~b}$
9	26	a		b					
9	8	a		b-2a	2	6	a	b	
1	8	$a-(b-2 a)=3 a-b$		b-2a	2	0		b-3a	
1	0	$3 \mathrm{a}-\mathrm{b}$	$b-2 a-8(3 a-b)=-26 a+9 b$						

So,

$$
2^{-1} \equiv 4 \quad(\bmod 7) \quad 4^{-1} \equiv 3 \quad(\bmod 11) \quad 9^{-1} \equiv 3 \quad(\bmod 26) \quad 2^{-1} \notin \mathbb{Z}_{6}
$$

It is also possible to find multiplicative inverses by using the Euler theorem, which states that if integers n and a are co-prime, then

$$
a^{\varphi(n)} \equiv 1 \quad(\bmod n)
$$

We can use this formula to obtain the multiplicative inverse of a as

$$
a^{-1} \equiv a^{\varphi(n)-1} \quad(\bmod n),
$$

so that $a \cdot a^{-1}=a \cdot a^{\varphi(n)-1}=a^{\varphi(n)} \equiv 1(\bmod n)$.
$\varphi(7)=6$, and therefore $2^{-1}=2^{5} \equiv 4(\bmod 7) . \varphi(11)=10$, and so $4^{-1}=4^{9} \equiv 3(\bmod 11)$. $\varphi(26)=\varphi(2) \cdot \varphi 13=12$, and so $9^{-1}=9^{1} 1 \equiv 3$. Finally, 2 is not invertible in \mathbb{Z}_{6}, no matter which formula or algorithm we use to calculate it.
2. Find additive inverse

$$
-3 \text { in } \mathbb{Z}_{5} \quad-4 \text { in } \mathbb{Z}_{10}
$$

Solution.

$$
-3 \equiv 2 \quad(\bmod 5) \quad-4 \equiv 6 \quad(\bmod 10)
$$

3. How many invertible elements?

$$
\begin{array}{lll}
\mathbb{Z}_{6} & \mathbb{Z}_{6}^{\times} & \mathbb{Z}_{11}^{\times}
\end{array}
$$

Solution. There are 6 invertible elements in \mathbb{Z}_{6}, there are $\{0,1,2,3,4,5\}$. There are

$$
\varphi(6)=\varphi(2 \cdot 3)=\varphi(2) \cdot \varphi(3)=(2-1)(3-1)=2
$$

invertible elements in \mathbb{Z}_{6}^{\times}, namely, $\{1,5\}$. There are $\varphi(11)=11-1=10$ invertible elements in \mathbb{Z}_{11}^{\times}.
4. Which elements have multiplicative inverses in \mathbb{Z}_{8} and \mathbb{Z}_{20} ?

Solution. In $\mathbb{Z}_{8}: 1,3,5,7$. In $\mathbb{Z}_{20}: 1,3,7,9,11,13,17,19$.
5. Write out addition and multiplication tables in \mathbb{Z}_{5} and \mathbb{Z}_{8}.

Solution. The Cayley tables for \mathbb{Z}_{5} can be seen in Table 1, and the Cayley tables for \mathbb{Z}_{8} can be seen in Table 2.

Table 1: Cayley tables for \mathbb{Z}_{5}.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

\times	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

Table 2: Cayley tables for \mathbb{Z}_{8}.

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

\times	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

6. Solve the following linear equations

$$
\begin{array}{llll}
x+3 \equiv 2 \quad(\bmod 5) & 5+6 \equiv x & (\bmod 11) & 5 x+2 \equiv 3 \quad(\bmod 7) \\
4 x+3 \equiv 11 \quad(\bmod 12) & x-4 \equiv 7 \quad(\bmod 12) & 4 x \equiv 2 \quad(\bmod 19) \\
4 x+3 \equiv 5 \quad(\bmod 13) & 2 x+1 \equiv 9 x-4 \quad(\bmod 23) & 5 x-1 \equiv 3 x+1 \quad(\bmod 26)
\end{array}
$$

Solution. (a) $x+3 \equiv 2(\bmod 5)$. Since $-3 \equiv 2$ in \mathbb{Z}_{5},

$$
x+3+2 \equiv 2+2 \quad(\bmod 5) \Longrightarrow x \equiv 4 \quad(\bmod 5) .
$$

(b) $5+6 \equiv x(\bmod 11)$. It is easy to see that $5+6=11 \equiv 0(\bmod 11)$.
(c) $5 x+2 \equiv 3(\bmod 7)$. Since $-2 \equiv 5$ in $\mathbb{Z}_{7}, 5 x \equiv 1(\bmod 7)$. Next, we need to find 5^{-1} in \mathbb{Z}_{7} to solve the equation. Since $5^{-1}=3$ in \mathbb{Z}_{7}, this is our answer. Indeed, $5 \cdot 3+2=17 \equiv 3$ $(\bmod 7)$.
(d) $4 x+3 \equiv 11(\bmod 12)$. Since $-3 \equiv 9$ in $\mathbb{Z}_{12}, 4 x \equiv 8(\bmod 12)$. There is no element 4^{-1} in \mathbb{Z}_{12}, since $\operatorname{gcd}(4,12)=4 \neq 1$. Let us divide this equation by 4 to get $x \equiv 2(\bmod 3)$. This is the solution to the original equation as well. To verify, observe that $4 \cdot 2+3=11 \equiv 11$ $(\bmod 12)$.
(e) $x-4 \equiv 7(\bmod 12)$. Adding 4 to both sides of the equation we get $x \equiv 11(\bmod 12)$.
(f) $4 x \equiv 2(\bmod 19)$. To solve the equation we need to find 4^{-1} in \mathbb{Z}_{19} and multiply both sides of the equation by it. $4^{-1}=5$ in \mathbb{Z}_{19}, so multiplying both sides of the equation by 5 , we get

$$
5 \cdot 4 x \equiv 5 \cdot 2 \quad(\bmod 19) \Longrightarrow x \equiv 10 \quad(\bmod 19)
$$

Indeed, $4 \cdot 10=40 \equiv 2(\bmod 19)$.
(g) $4 x+3 \equiv 5(\bmod 13)$. Adding $-3 \equiv 10 \in \mathbb{Z}_{19}$ to both sides of the equation, we get $4 x \equiv 2$ $(\bmod 13) \cdot 4^{-1}=-3 \equiv 10$ in $\mathbb{Z}_{1} 3$. Multiplying both sides of the equation by 10 , we get

$$
10 \cdot 4 x \equiv 10 \cdot 2 \quad(\bmod 13) \Longrightarrow x \equiv 7 \quad(\bmod 13)
$$

Indeed, $4 \cdot 7+3=31 \equiv 5(\bmod 13)$.
(h) $2 x+1 \equiv 9 x-4(\bmod 23)$.

$$
2 x+1 \equiv 9 x-4 \quad(\bmod 23) \Longrightarrow 16 x+1 \equiv-4 \quad(\bmod 23) \Longrightarrow 16 x \equiv 18 \quad(\bmod 23)
$$

$16^{-1}=13$ in \mathbb{Z}_{23}, multiplying both sides of the equation by 13 , we have $16 \cdot 13 \cdot x \equiv 18 \cdot 13$ $(\bmod 23) \Longrightarrow x \equiv 4(\bmod 23)$. Indeed, $2 \cdot 4+1 \equiv 9 \cdot 4-4(\bmod 23) \Longrightarrow 9 \equiv 32(\bmod 23)$.
(i) $5 x-1 \equiv 3 x+1(\bmod 26)$.

$$
\begin{aligned}
5 x-1 \equiv 3 x+1 \quad(\bmod 26) & \Longrightarrow 5 x \equiv 3 x+2 \quad(\bmod 26) \\
& \Longrightarrow 2 x \equiv 2 \quad(\bmod 26) \Longrightarrow x \equiv 1 \quad(\bmod 26)
\end{aligned}
$$

Indeed, $5 \cdot 1-1 \equiv 3 \cdot 1+1(\bmod 23)$.
7. Solve the systems of linear equations

$$
\begin{array}{ll}
\begin{cases}a+b \equiv 17 & (\bmod 26) \\
2 a+b \equiv 0 & (\bmod 26)\end{cases} & \begin{cases}a+b \equiv 17 & (\bmod 26) \\
4 a+b \equiv 1 & (\bmod 26)\end{cases} \\
\begin{cases}a+b \equiv 17 & (\bmod 26) \\
3 a+b \equiv 0 & (\bmod 26)\end{cases} & \begin{cases}5 a+b \equiv 21 & (\bmod 26) \\
16 a+b \equiv 10 & (\bmod 26)\end{cases} \\
\begin{cases}8 a+b \equiv 8 & (\bmod 26) \\
5 a+b \equiv 13 & (\bmod 26)\end{cases}
\end{array}
$$

Solution. (a) $\left\{\begin{array}{l}a+b \equiv 17(\bmod 26) \\ 2 a+b \equiv 0(\bmod 26)\end{array}\right.$.
Subtracting the first equation from the second, we get $a \equiv 9(\bmod 26)$. Substituting this value of a into the first equation, we have $b+9 \equiv 17 \Longrightarrow b \equiv 8(\bmod 26)$. To verify, observe that $9+8 \equiv 17(\bmod 26)$ and $2 \cdot 9+8 \equiv 0(\bmod 26)$.
(b) $\left\{\begin{array}{l}a+b \equiv 17(\bmod 26) \\ 4 a+b \equiv 1(\bmod 26)\end{array}\right.$.

Subtracting the second equation from the first one, we get $23 a \equiv 16(\bmod 26)$. Since $23^{-1}=17$ in \mathbb{Z}_{26}, multiplying both sides of the equation by 17 , we have

$$
17 \cdot 23 a \equiv 17 \cdot 16 \Longrightarrow a \equiv 12 \quad(\bmod 26) .
$$

Substituting a into the first equation, we have $b+12 \equiv 17 \Longrightarrow b \equiv 5(\bmod 26)$. To verify, observe that $12+5=17(\bmod 26)$ and $4 \cdot 12+5=53 \equiv 1(\bmod 26)$.
(c) $\left\{\begin{array}{l}a+b \equiv 17(\bmod 26) \\ 3 a+b \equiv 0(\bmod 26)\end{array}\right.$.

Subtracting the second equation from the first one, we get $24 a \equiv 17(\bmod 26)$. This equation is not solvable, since there is no element 24^{-1} in \mathbb{Z}_{26} and $2 \chi 17$.
(d) $\left\{\begin{array}{l}5 a+b \equiv 21(\bmod 26) \\ 16 a+b \equiv 10(\bmod 26)\end{array}\right.$.

Subtracting the second equation from the first one, we get $15 a \equiv 11(\bmod 26)$. Since $15^{-1}=7$ in \mathbb{Z}_{26}, multiplying both sides of the equation by 7 , we get $a \equiv 7 \cdot 11 \equiv 25$ $(\bmod 26)$. Substituting the value of a into the first equation, we get $b=21-5 \cdot 25 \equiv 0$ $(\bmod 26)$.
(e) $\left\{\begin{array}{l}8 a+b \equiv 8(\bmod 26) \\ 5 a+b \equiv 13(\bmod 26)\end{array}\right.$.

Subtracting the second equation from the first one, we get

$$
3 a \equiv 21 \quad(\bmod 26) \Longrightarrow a \equiv 7 \quad(\bmod 26)
$$

Substituting the value of a into the first equation, we get

$$
7 \cdot 8+b \equiv 8 \quad(\bmod 26) \Longrightarrow 4+b \equiv 8 \quad(\bmod 26) \Longrightarrow b \equiv 4 \quad(\bmod 26) .
$$

To verify that the solution is indeed correct, observe that $8 \cdot 7+4=60 \equiv 8(\bmod 26)$ and $5 \cdot 7+4=39 \equiv 13(\bmod 26)$.
8. Solve for x
(a) $\begin{cases}x \equiv 1 & (\bmod 3) \\ x \equiv 2 & (\bmod 4)\end{cases}$
(b) $\begin{cases}x \equiv 0 & (\bmod 4) \\ x \equiv 3 & (\bmod 7)\end{cases}$
(c) $\left\{\begin{array}{l}x \equiv 10 \quad(\bmod 12) \\ x \equiv 3 \quad(\bmod 5)\end{array}\right.$
(d) $\begin{cases}x \equiv 3 & (\bmod 5) \\ x \equiv 5 & (\bmod 6)\end{cases}$

Solution. (a) The Bézout identity for $(3,4)$ is $-1 \cdot 3+1 \cdot 4=1$. Hence the solution is

$$
x=1 \cdot 1 \cdot 4+2 \cdot(-1) \cdot 3=4-6=-2 \equiv 10 \quad(\bmod 12) .
$$

One can observe that $10 \bmod 3=1$ and $10 \bmod 4=2$.
(b) The Bézout identity for $(4,7)$ is $2 \cdot 4-1 \cdot 7=1$. Hence the solution is

$$
x=3 \cdot 2 \cdot 4+0=24 \quad(\bmod 28) .
$$

One can observe that $24 \bmod 4=0$ and $24 \bmod 7=3$.
(c) The Bézout identity for $(12,5)$ is $-2 \cdot 12+5 \cdot 5=1$. Hence the solution is

$$
x=3 \cdot-2 \cdot 12+10 \cdot 5 \cdot 5=-72+250=178 \equiv 58 \quad(\bmod 60) .
$$

One can observe that $58 \bmod 12=10$ and $58 \bmod 5=3$.
(d) The Bézout identity for $(5,6)$ is $1 \cdot 6-1 \cdot 5=1$. Hence the solution is

$$
x=5 \cdot 5 \cdot(-1)+3 \cdot 6 \cdot 1=-25+18=-7 \equiv 23 \quad(\bmod 30) .
$$

One can observe that $23 \bmod 5=3$ and $23 \bmod 6=5$.
9. Solve for x

$$
\text { (a) }\left\{\begin{array} { l l }
{ x \equiv 0 } & { (\operatorname { m o d } 2) } \\
{ x \equiv 2 } & { (\operatorname { m o d } 3) } \\
{ x \equiv 3 } & { (\operatorname { m o d } 5) }
\end{array} \quad \text { (b) } \left\{\begin{array}{ll}
x \equiv 1 & (\bmod 2) \\
x \equiv 2 & (\bmod 3) \\
x \equiv 3 & (\bmod 5) \\
x \equiv 5 & (\bmod 7)
\end{array}\right.\right.
$$

Solution. (a) We've got 3 moduli, hence $N=2 \cdot 3 \cdot 5=30$ and

$$
N_{1}=\frac{30}{2}=15, \quad N_{2}=\frac{30}{3}=10, \quad N_{3}=\frac{30}{5}=6
$$

The Bézout identities for $\operatorname{gcd}\left(N_{i}, n_{i}\right)$ are

$$
\begin{aligned}
& \operatorname{gcd}(15,2)=1 \cdot 15+(-7) \cdot 2=1 \\
& \operatorname{gcd}(10,3)=1 \cdot 10+(-3) \cdot 3=1 \\
& \operatorname{gcd}(6,5)=1 \cdot 5+(-1) \cdot 5=1
\end{aligned}
$$

Hence, $M_{1}=M_{2}=M_{3}=1$. We will use the formula

$$
\begin{equation*}
x \equiv \sum_{i=1}^{k} a_{i} M_{i} N_{i} \quad(\bmod N) . \tag{1}
\end{equation*}
$$

Therefore,

$$
x=0+2 \cdot 1 \cdot 10+3 \cdot 1 \cdot 6=38 \equiv 8 \quad(\bmod 30) .
$$

To verify that 8 is indeed the solution, observe that

$$
8 \bmod 2=0, \quad 8 \bmod 3=2, \quad 8 \bmod 5=3 .
$$

(b) We've got 4 moduli, hence $N=2 \cdot 3 \cdot 5 \cdot 7=210$ and

$$
N_{1}=\frac{210}{2}=105, \quad N_{2}=\frac{210}{3}=70, \quad N_{3}=\frac{210}{5}=42, \quad N_{4}=\frac{210}{7}=30
$$

The Bézout identities for $\operatorname{gcd}\left(N_{i}, n_{i}\right)$ are

$$
\begin{aligned}
& \operatorname{gcd}(105,2)=1 \cdot 105+(-52) \cdot 2=1, \\
& \operatorname{gcd}(70,3)=1 \cdot 70+(-23) \cdot 3=1 \\
& \operatorname{gcd}(42,5)=(-2) \cdot 42+17 \cdot 5=1, \\
& \operatorname{gcd}(30,7)=(-3) \cdot 30+13 \cdot 7=1 .
\end{aligned}
$$

Hence, $M_{1}=M_{2}=1, M_{3}=-2, M_{4}=-3$. By (1), the solution is

$$
x=1 \cdot 1 \cdot 105+2 \cdot 1 \cdot 70+3 \cdot(-2) \cdot 42+5 \cdot(-3) \cdot 30=-457 \equiv 173 \quad(\bmod 210) .
$$

To verify that 173 is indeed the solution, observe that
$173 \bmod 2=1, \quad 173 \bmod 3=2, \quad 173 \bmod 5=3, \quad 173 \bmod 7=5$.

