Exercise 1. Show that the set \mathbb{Z} is countably infinite.
Solution. We need to demonstrate the existence of a bijection $\mathbb{Z} \rightarrow \mathbb{N}$. Indeed, such a mapping exists:

$$
\begin{aligned}
& \cdots \\
&-3 \mapsto 5 \\
&-2 \mapsto 3 \\
&-1 \mapsto 1 \\
& 0 \mapsto 0 \\
& 1 \mapsto 2 \\
& 2 \mapsto 4 \\
& 3 \mapsto 6
\end{aligned}
$$

In other words, 0 maps to itself, negative numbers are mapped to odd numbers using function $g(n)=-(2 n+1)$, positive numbers are mapped to even numbers using the function $f(n)=2 n$.

Exercise 2. Given a permutation

$$
\pi=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

on a set $S=\{1,2,3\}$, define an inverse permutation π^{-1}.

Solution.

$$
\pi^{-1}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \quad \pi^{-1} \circ \pi=\pi \circ \pi^{-1}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)
$$

Exercise 3. Let $f(x)=x^{2}$ and $g(x)=2 x+5$. Define compositions $(f \circ g)(x)$ and $(g \circ f)(x)$. Are they the same?

Solution.

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f(2 x+5)=(2 x+5)^{2} \\
& (g \circ f)(x)=g(f(x))=g\left(x^{2}\right)=2 x^{2}+5
\end{aligned}
$$

The compositions of mappings are not the same, since $f \circ g \neq g \circ f$.
Exercise 4. Let $f(x)=x^{3}$ and $g(x)=\sqrt[3]{x}$. Define compositions $(f \circ g)(x)$ and $(g \circ f)(x)$. Are they the same?

Solution.

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f(\sqrt[3]{x})=(\sqrt[3]{x})^{3}=x \\
& (g \circ f)(x)=g(f(x))=g\left(x^{3}\right)=\sqrt[3]{x^{3}}=x
\end{aligned}
$$

The compositions of mappings are the same, meaning that $f \circ g=g \circ f$.

Exercise 5. Let $h: S \rightarrow T$ be a bijection, and let h^{-1} be its inverse. What are the mappings $h \circ h^{-1}$ and $h^{-1} \circ h$?

Solution.

$$
\begin{aligned}
& h \circ h^{-1}: T \rightarrow T=i d_{T} \\
& h^{-1} \circ h: S \rightarrow S=i d_{S}
\end{aligned}
$$

Exercise 6. Let A and B be sets. Let $A^{\prime} \subset A$ and $I: A^{\prime} \rightarrow A^{\prime}$. Is the composition $f \circ I$ the same as the restriction of f to A^{\prime} ?

Definition 1 (Restriction of a mapping to a subset). If $f: A \rightarrow B$ is a mapping and $A^{\prime} \subset A$, the mapping $f^{\prime}: A^{\prime} \rightarrow B$ given by $x \mapsto f(x)$ for $x \in A^{\prime}$ is called the restriction of f to A^{\prime}.

Solution. We will show that the composition $f \circ I$ behaves like $f: A^{\prime} \rightarrow B$ defined by $x \mapsto f(x)$. Indeed, since I is the identity $\operatorname{map}, I(x)=x$, and so

$$
\forall x \in A^{\prime}:(f \circ I)(x)=f(I(x))=f(x)
$$

Exercise 7. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. If $g \circ f$ is injective, show that f is injective.
Solution. For any two values a, b and any function h, it holds that $a=b \Longrightarrow h(a)=h(b)$. To show that f is injective, we assume the condition $f(a)=f(b)$. Then

$$
f(a)=f(b) \Longrightarrow g(f(a))=g(f(b)) \Longrightarrow(g \circ f)(a)=(g \circ f)(b) .
$$

By injectivity of $g \circ f$, it holds that

$$
(g \circ f)(a)=(g \circ f)(b) \Longrightarrow a=b
$$

And so, we have shown that f is injective:

$$
f(a)=f(b) \Longrightarrow(g \circ f)(a)=(g \circ f)(b) \Longrightarrow a=b
$$

Exercise 8. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. If $g \circ f$ is injective and f is surjective, show that g is injective.

Solution. We need to show that g is injective: $\forall a, b \in B: g(a)=g(b) \Longrightarrow a=b$. So we start by assuming that $g(a)=g(b)$. By surjectivity of f, there exist elements $x, y \in A$ such that $f(x)=a$ and $f(y)=b$. And so we have

$$
g(a)=g(b) \Longrightarrow g(f(x))=g(f(y)) \Longrightarrow(g \circ f)(x)=(g \circ f)(y)
$$

By injectivity of $g \circ f$,

$$
(g \circ f)(x)=(g \circ f)(y) \Longrightarrow x=y
$$

and if we apply f to both sides,

$$
x=y \Longrightarrow f(x)=f(y) \Longrightarrow a=b
$$

Therefore, by showing that

$$
g(a)=g(b) \Longrightarrow(g \circ f)(x)=(g \circ f)(y) \Longrightarrow x=y \Longrightarrow f(x)=f(y) \Longrightarrow a=b
$$

we have shown that g is injective.

Exercise 9. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. If $g \circ f$ is surjective and g is injective, show that f is surjective.

Solution. To show that f is surjective, we need to show that for any element $b \in B$ there exists an element $a \in A$ such that $f(a)=b$. Let $b \in B$. By injectivity of g, there exists a unique $c \in C$ such that $c=g(b)$. By surjectivity of $g \circ f$, there exists $a \in A$ such that $c=(g \circ f)(a)=g(f(a))$. By injectivity of $g, g(f(a))=g(b) \Longrightarrow f(a)=b$. Therefore, we have shown for any $b \in B$ there exists $a \in A$ such that $f(a)=b$, and hence f is surjective.

Exercise 10. Let A and B be sets. Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be mappings. If $f \circ g=i d_{B}$, show that f is surjective.

Solution. We need to show that f is surjective, meaning that we need to show that for every $b \in B$ there exists $a \in A$ such that $b=f(a)$. The composition $f \circ g$ is an identity mapping, meaning that for every $b \in B$, it holds that $(f \circ g)(b)=f(g(b))=b$. We can see that if we take $a=g(b)$, then indeed, for every $b \in B$, there exists $a=g(b) \in A$ such that $f(a)=f(g(b))=(f \circ g)(b)=b$.

Exercise 11. Let A and B be sets. Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be mappings. If $g \circ f=i d_{A}$, show that f is injective.

Solution. We need to show that f is injective, meaning that for any $a, b \in A: f(a)=f(b) \Longrightarrow$ $a=b$. We start by assuming $f(a)=f(b)$. If we apply g to both sides, since g is a function, the result will not change, meaning that

$$
f(a)=f(b) \Longrightarrow g(f(a))=g(f(b)) \Longrightarrow(g \circ f)(a)=(g \circ f)(b) .
$$

We know that $g \circ f$ is an identity map, meaning that for every $a \in A$, it holds that $(g \circ f)(a)=a$. In turn, it means that

$$
(g \circ f)(a)=(g \circ f)(b) \Longrightarrow a=b .
$$

We have shown that $f(a)=f(b) \Longrightarrow a=b$, and therefore f is injective.

