Data Mining, Lecture 6
 Association Patten Mining

S. Nõmm
${ }^{1}$ Department of Software Science, Tallinn University of Technology

17.10.2017

What Pattern is?

- Pattern recognition is the discipline whose goal is the classification of objects into a number of classes or categories. [S.Theodoridis]
- What Pattern is? Object? Sub set?

Market basket data

- Most popular example is Supermarket data. The goal is to determine associations between groups of items bought by customers.
- Discovered sets of items are referred to as large itemsets, frequent itemsets, or frequent patterns.
- Main applications include supermarket data (or shopping basket data in general), text mining, generalization to dependency-oriented data types.
- Within this chapter initial data will be refereed as transactions and outputs as itemsets.

The Frequent Pattern Mining Model

- Let U be the d - dimensional universe of elements (goods offered by the supermarket) and \mathcal{T} is the set of transactions T_{1}, \ldots, T_{n}. They said that transaction T_{i} is drawn on universe of items U.
- T_{i} may be represented by d-dimensional binary record.
- itemset is the set of items. k-itemset is the itemset containing exactly k-items.

The Frequent Pattern Mining Model

Definition

Support The support of an itemset I is defined as the fraction of the transactions in the database $\mathcal{T}=\left\{T_{1}, \ldots T_{n}\right\}$ that contain I as the subset

The support of the itemset I is defined by $\sup (I)$. Not to be confused with supremum.

Definition

Frequent Itemset Mining Given a set of trasactions $\mathcal{T}=\left\{T_{1}, \ldots T_{n}\right\}$ where each transaction T_{i} is drawn on the universe of elements U, determine all itemsets I that occure as a subset of at least a predefined fraction minsup of the transactions in \mathcal{T}.

Predefined fraction minsup is referred as minimal support.

Example: Market basket data set

tid	Set of items	Biary representation
1	\{ Bread,Butter, Milk \}	110010
2	\{ Eggs, Milk, Yogurt \}	000111
3	\{ Bread, Cheese, Eggs, Milk \}	101110
4	\{ Eggs, Milk, Yogurt \}	000111
5	\{ Cheese, Milk, Yogurt \}	001011

The Frequent Pattern Mining Mode

Definition

Frequent Itemset Mining: Set-wise Given as set of sets $\mathcal{T}=\left\{T_{1}, \ldots T_{n}\right\}$, where each transaction T_{i} is drawn on the universe of elements U, determine all sets I that occur as the subset of at least a predefined fractonminsup of the sets in \mathcal{T}.

Support Monotonicity Property The support of every subset J of I is at least equal to the of the support of itemset I.

$$
\sup (J) \geq \sup (I) \quad \forall J \subset I
$$

Downward Closure Property Every subset of the frequent itemset is also frequent.

Definition

Maximal Frequent Itemsets A frequent itemset is maximala at a given minimum support level minsup, if it is frequent and no superset of its frequent.

Association Rule Generation Framework

Informal definition If the presence of item set X in the certain transaction(s) leads (implies) presence of the set of items Y in the same transaction(s) then we talk about rule $(X \Rightarrow Y)$.

Definition

Confidence Let X and Y be two sets of items. The confidence of the rule $\operatorname{conf}(X \Rightarrow Y)$ conditional probability of $X \cup Y$ occurring in a transaction, given that the transaction contains X

$$
\operatorname{conf}(X \Rightarrow Y)=\frac{\sup (X \cup Y)}{\sup (X)}
$$

Definition

Association Rule Let X and Y be two sets of items. Then, the rule $X \Rightarrow Y$ is said to be an association rule at a minimum support of minsup and minimum confidence min conf if it satisfies following conditions.
(1) $\sup (X \cup Y) \geq \min \sup$
(2) $\operatorname{conf}(X \Rightarrow Y) \geq$ minconf

Frequent Itemset Mining Algorithms

- Brute force algorithms.
- The Apriori algorithm.
- Enumeration-Tree Algorithms
- Recursive Suffix-Based Pattern Growth Methods

The Apriori Algorithm

begin
$k=1$;
$\mathcal{F}_{1}=\{$ All Frequent 1-itemsets $\} ;$
while $\mathcal{F}_{k} \neq \emptyset$
Generate \mathcal{C}_{k+1} by joining itemset-pairs in \mathcal{F}_{k};
Prune itemsets from \mathcal{C}_{k+1} that violate downward closure;
Determine \mathcal{F}_{k+1} by support counting on $\left(\mathcal{C}_{k+1}, T\right)$ and retaining from \mathcal{C}_{k+1} with support of at least minsup; $k=k+1$;
end
return $\left(\cup_{i=1}^{k} \mathcal{F}_{i}\right)$
end

Alternative Models: Interesting Patterns

- Collective strength
- Statistical Coefficient of Correlation
- χ^{2} Measure
- Nonlinear relationships

Collective strength

- An itenset is said to be in violation of transaction, if some of the items are present in the transaction and others are not.
- The violation rate $v(I)$ of the itemset I is defined as the fraction of violations of the itemset I over all transactions.
- The collective strength $C(I)$ of the itemset I is defined as follows

$$
C(I)=\frac{1-v(I)}{1-E[v(I)]} \cdot \frac{R[v(I)]}{v(I)} .
$$

- The expected value of the $v(I)$

$$
R[v(I)]=1-\prod_{i \in I} p_{i}-\prod_{i \in I}\left(1-p_{i}\right)
$$

where p_{i} is the fraction of transactions where the item i occurs.

Collective strength

- Let us consider violation to be an unfavorable event (prospective of establishing a high correlation among items)
- Collective strength may be expressed as follows:

$$
C(I)=\frac{\text { Good } \quad \text { events }}{E\left[\begin{array}{ll}
\text { Good } & \text { events }]
\end{array} \frac{E\left[\begin{array}{ll}
\text { Bad } & \text { events }
\end{array}\right]}{\text { Bad }} \text { events }\right]}
$$

- This leads us to the idea of Negative Pattern Mining. Determine patterns between the items or their absence.

Statistical Coefficient of Correlation

Covariance is the measure of the strength of correlation between two sets of random variables.

$$
\operatorname{cov}(X, Y)=\sum_{i=1}^{N} \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{N}
$$

Correlation coefficient is standardized

$$
\rho_{X Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

or in another form

$$
\rho=\frac{E[X Y]-E[X] E[Y]}{\sigma(X) \sigma(Y)}
$$

Statistical Coefficient of Correlation

The Pearson correlation coefficient

$$
\rho=\frac{E[X Y]-E[X] E[Y]}{\sigma(X) \sigma(Y)}
$$

May be rewritten in terms of support as follows

$$
\rho_{i j}=\frac{\sup (\{i, j\})-\operatorname{sum}(i) \cdot \sup (j)}{\sqrt{\sup (i) \cdot \sup (j) \cdot(1-\sup (i)) \cdot(1-\sup (j))}}
$$

Should we talk here about regression?

χ^{2} measure

χ^{2} test allows to assess if unpaired observations of two categorical variables are independent of each other or not.

$$
\chi^{2}=\sum_{i=1}^{\nu_{1} \cdot \nu_{2}} \frac{\left(\mathcal{O}_{i}-E_{i}\right)^{2}}{E_{i}}
$$

where ν_{1} and ν_{2} are the degrees of freedom (number of categories) in the first and in second variables respectively. In the case of binary data $\nu_{1} \cdot \nu_{2}=2^{|X|}$.

Nonlinear

$$
y(x)=a_{1} x^{n}+a_{2} x^{n-1}+\ldots+a_{n} x+b
$$

$$
y(x)=f(x)
$$

where $f(\cdot)$ is arbitrary nonlinear function

